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ClusterMap for multi-scale clustering analysis of
spatial gene expression
Yichun He 1,2,8, Xin Tang 1,2,8, Jiahao Huang2, Jingyi Ren2,3, Haowen Zhou2, Kevin Chen4, Albert Liu2,3,

Hailing Shi2,3, Zuwan Lin4,2, Qiang Li1, Abhishek Aditham2,5, Johain Ounadjela2,6, Emanuelle I. Grody2,6,

Jian Shu2,6,7, Jia Liu 1✉ & Xiao Wang 2,3✉

Quantifying RNAs in their spatial context is crucial to understanding gene expression and

regulation in complex tissues. In situ transcriptomic methods generate spatially resolved RNA

profiles in intact tissues. However, there is a lack of a unified computational framework for

integrative analysis of in situ transcriptomic data. Here, we introduce an unsupervised and

annotation-free framework, termed ClusterMap, which incorporates the physical location and

gene identity of RNAs, formulates the task as a point pattern analysis problem, and identifies

biologically meaningful structures by density peak clustering (DPC). Specifically, ClusterMap

precisely clusters RNAs into subcellular structures, cell bodies, and tissue regions in both

two- and three-dimensional space, and performs consistently on diverse tissue types,

including mouse brain, placenta, gut, and human cardiac organoids. We demonstrate Clus-

terMap to be broadly applicable to various in situ transcriptomic measurements to uncover

gene expression patterns, cell niche, and tissue organization principles from images with

high-dimensional transcriptomic profiles.
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T issue functions arise from the orchestrated interactions of
multiple cell types, which are shaped by differential gene
expression in three-dimensional (3D) space. To chart the

spatial heterogeneity of gene expression in cells and tissues, a
myriad of image-based in situ transcriptomics methods (e.g.,
STARmap, FISSEQ, ISS, MERFISH, seqFISH, osmFISH, etc.)
have been developed1–8, providing an atlas of subcellular RNA
localization in intact tissues. However, it is challenging to directly
extract low-dimensional representations of biological patterns
from high-dimensional spatial transcriptomic data.

One main challenge is to achieve accurate and automatic cell
segmentation that accurately assigns RNAs into individual cells
for single-cell analysis. The most common cell segmentation
strategy is labeling cell nuclei or cell bodies by fluorescent
staining9–11 (e.g., DAPI, Nissl, WGA, etc.) and then segmenting
the continuous fluorescent signals by conventional or machine
learning (ML)-based methods12. However, conventional methods,
such as distance-transformed watershed13, require manual cura-
tion to achieve optimal but still unsatisfactory segmentation
results. On the other hand, while ML-based methods14, 15 can
automatically detect the targets (cells) in fluorescent staining, they
still require manually annotated datasets for model training and
have poor generalization ability to other datasets.

In order to address these challenges, a fundamentally different
approach that bypasses auxiliary cell staining, hyperparameter
tuning, and manual labeling is needed. Here, instead of using
fluorescent staining, we directly utilized the patterns of spatially
resolved RNAs that intrinsically encode high-dimensional gene
expression information for subcellular and cellular segmentation,
followed by cell-type spatial mapping. To leverage the spatial
heterogeneity of RNA-defined cell types, we applied the same
strategy to cluster discrete cells into tissue regions. Together, we
demonstrated that this computational framework (termed Clus-
terMap) can identify subcellular structures, cells, and tissue
regions (Fig. 1).

Results
ClusterMap integrates spatial and gene expression analyses.
ClusterMap is based on two key biological phenomena. First, the
density of RNA molecules is higher inside cells than outside cells;
second, cellular RNAs encoded by different genes are enriched at
different subcellular locations, cell types, and tissue regions16, 17.
Thus, we reasoned that we could identify biologically meaningful
patterns and structures directly from in situ transcriptomic data
by joint clustering the physical density and gene identity of RNAs.
Subsequently, the spatial clusters were interpreted based on the
gene identity and spatial scales to represent subcellular localiza-
tion, cell segmentation, and region identification.

ClusterMap started with pre-processed imaging-based in situ
transcriptomic data (Methods), where raw fluorescent images
were converted into discrete RNA spots with a physical 3D
location and a gene identity (i.e. mRNA spot matrix, Fig. 1a). We
reasoned that spatial clusters can be distinguished based on the
gene expression in the local neighborhood of each RNA spot. To
quantify this, we introduced a high-dimensional vector, termed
neighborhood gene composition (NGC), which was computed by
considering gene expression profiles in a circular window over
each RNA spot (Fig. 1bI, Methods section). ClusterMap is capable
of analysis on different spatial resolutions by changing the radius
of the window (Supplementary Fig. 2). The size of the window is
specifically chosen for the same dataset to match the average size
of organelles or cells for subcellular or single-cell analysis,
respectively (Methods). The NGC coordinates and physical
coordinates of each RNA spot are then computationally integrated
into joint physical and NGC (P-NGC) coordinates over each spot.

Next, we aimed to cluster the RNAs in the P-NGC coordinates
for downstream segmentation. Out of numerous clustering
algorithms, density peak clustering (DPC)18, a type of density-
based clustering method, was chosen for its versatility in
extracting biological features in data and its compatibility with
clusters of various shapes and dimensionalities automatically.
DPC identifies cluster centers with a higher density than the
surrounding regions as well as a relatively large distance from
points with higher densities. We applied DPC to compute two
variables18: local density ρ and distance δ for each spot in the
joint P-NGC space. For each spot, ρ value represents the density
of its closely surrounded spots, and δ value represents the
minimal distance to spots with higher ρ values. Spots with both
high ρ and δ values are highly likely to be cluster centers. We then
ranked the product of these two variables, γ, in decreasing order
to find genuine clusters with orders of magnitude higher γ values
(Methods). For example, in Fig. 1b, the two spots with the γ
values that are orders of magnitude higher than other spots are
chosen as cell centers (labeled by a red star and a cyan hexagon,
Fig. 1bII). After the two cluster centers (labeled as C1 or C2) have
been selected, the remaining spots are assigned to one of the
clusters respectively in a descending order of ρ value. Each spot is
assigned to the same cluster as its nearest previously assigned
neighbor18, and each cluster of spots represents an individual cell
(Fig. 1bIII) for downstream analysis (Fig. 1bIV). Outliers that
were falsely assigned among cells can be filtered out using noise
detection in DPC18. To illustrate this framework, we tested the
performance of ClusterMap in five simulated clustering bench-
mark datasets (Supplementary Fig. 1)19 and one representative
in situ transcriptomic data collected by STARmap6 (Fig. 1c).
Compared with previous methods20, ClusterMap showed con-
sistent performance in all six datasets even when the spot
distributions contained irregular boundary, varying physical
density, and heterogeneous shapes and sizes.

Next, we examined and validated the performance of
ClusterMap in diverse biological samples at different spatial
scales in both 2D and 3D (Fig. 1d). First, based on the assumption
that cellular RNAs have a different distribution in the nucleus or
cytoplasm21, we used ClusterMap to cluster mRNAs within one
cell to delineate the nuclear boundary. Here, RNA spots with both
highly correlated neighboring composition and close spatial
distances were merged into a single signature (Supplementary
Fig. 3a and Methods section). Then, a convex hull was
constructed from the nucleus spots, denoting the nuclear
boundary. The patterns of ClusterMap-constructed nuclear
boundaries were highly correlated with DAPI stainings, confirm-
ing the power of ClusterMap for segmentation at the subcellular
resolution (Fig. 1dI). Second, we compared cell segmentation
results by ClusterMap with conventional watershed13 segmenta-
tion (Methods) on the same mouse cortex cells. Compared to the
conventional watershed method, ClusterMap accurately identified
cells, more precisely outlined cell boundary and illustrated cell
morphology (Fig. 1dII). Last, we extended ClusterMap to diverse
types of tissue at different scales in both 2D and 3D, where dense
heterogeneous populations of cells with arbitrary shapes exist.
Cell identification results for the mouse cerebellum, the ileum,
and the cortex are shown in Fig. 1dIII–V.

Spatial clustering analysis in mouse brain. We first demon-
strated ClusterMap on the mouse primary visual cortex from the
STARmap mouse primary cortex (V1) 1020-gene dataset6 (Sup-
plementary Table 1). When sequenced transcripts were more
likely to populate the cytoplasm, sparsely sampled spots based on
DAPI signals were combined with RNAs to compensate for the
lack of signals in cell nuclei, and they were together processed
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with ClusterMap procedures (Fig. 2a and Methods section). The
results show clear cell segmentation even for strongly crowded
mouse V1 cortex cells (Fig. 2b and Supplementary Fig. 3b).
Additionally, we evaluated whether ClusterMap-identified cell
center coordinates were within corresponding expert-labeled cell
regions on eight STARmap mouse V1 datasets to validate its
accuracy (Supplementary Fig. 3c). Notably, ClusterMap cell

labeling reached accuracy levels of 80–90% compared with
manually annotated segmentation labels (Methods section).

In the mouse V1 cortex dataset, ClusterMap identified cell
types22 that matched both expression signature and tissue
localization in the previous report6 (Fig. 2c and Supplementary
Fig. 4a, b). We further compared the single-cell gene expression
profiles from ClusterMap with those from manual annotation,
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and observed high correlation value and low p value between the
same cell type (Supplementary Fig. 5a, b and Methods section).
Importantly, ClusterMap can consistently identify cell types and
spatial localization across different biological replicates in the
mouse brain regions (Supplementary Figs. 4c–f and 5c–f).

The next challenge was to apply ClusterMap on the cell-typing
map to identify tissue regions. In this case, ClusterMap further
clustered cells based on their physical location and cell-type
identity, providing similar clustering analyses of physical and
high-dimensional cell-type information. ClusterMap computed
neighborhood cell-type composition (NCC) coordinates of each
cell23 and then clustered joint physical and NCC coordinates of
cells (Supplementary Fig. 3d and Methods section). As a result,
cells with both highly correlated neighboring cell-type composi-
tion and close spatial distances are clustered into a single tissue
region signature. The results showed that ClusterMap accurately
detected cortical layering, which allows for the quantification of
cell-type composition of each cortical layer (Fig. 2d, e). The
distinct region-specific distribution of excitatory neurons can be
observed in the L2/3, L4, L5, and L6 canonical layers, while
oligodendrocytes were significantly distributed within the corpus
callosum layer. In summary, ClusterMap can effectively, accu-
rately, and automatically conduct cell segmentation, cell typing,
and tissue region identification.

ClusterMap enables spatial clustering and cell niche analyses in
mouse placenta. To further demonstrate the generality of Clus-
terMap, especially its applicability to tissues with high cell density
and variable nuclear/cytosolic distribution of RNAs, we applied
ClusterMap to the STARmap mouse placenta 903-gene dataset
(Fig. 3a, b and Supplementary Table 1). With ClusterMap ana-
lyses described in Fig. 2a, up to 7224 cells were identified (Fig. 3c
and Supplementary Fig. 6a) and then clustered into twelve cell
types using Louvain clustering22, whose marker genes are con-
sistent with cell types defined from single-cell RNA-sequencing
(scRNA-seq)24 (Fig. 3d–f and Supplementary Fig. 6b–d). Clus-
terMap identified five tissue regions based on the cell-type map
(Fig. 3g), which corresponded to the histological section of a
mouse placenta in late gestation (H&E staining)25. Further ana-
lysis showed that Regions II and IV consisted of similar cell-type
compositions, while region I consisted of most maternal decidua
(MD) cells (Fig. 3h).

We further sought to use ClusterMap results to characterize the
near-range cell adjacency networks by generating a mesh graph
via Delaunay triangulation of cells and modeling the cellular
relationships based on the i-niche concept26. In this way, we
identified the nearest neighbors of each cell which were directly
contacting each other (Fig. 4a–d) and quantified the average
number of cells per cell-type among the first-tier neighbors
(Fig. 4e), which could reveal crucial information about the affinity
and communication among different cell types. Through this
methodology, we discovered the cell-type-specific cellular

adjacency graph: MD-1, trophoblast giant-2 (TG-2), and NK
cells mainly self-aggregate; glandular trophoblast-2 (GT-2), TG-1,
TG-3, endothelial and stromal cells widely connect with these five
types of cells; and Spongiotrophoblast -1 and Spongiotrophoblast
-2 cells have a high affinity to each other. To further explore if cell
niche influences gene expression and further defines cell subtypes,
as an example, we sub-clustered MD-1 cells based on either gene
expression (Louvain clustering) or the cell niche compositions (K-
means clustering). Both subclustering results identified two
subtypes. Confirming the similarity between two subclustering
results by adjusted Rand index (ARI) (ARI= 0.62, Supplementary
Fig. 7 and Methods section) suggests that cell adjacency graph
analysis can help identify subtypes shaped by cell niche. We
envision that identifying the cell-cell adjacency graph facilitates
future in-depth studies of tissue architecture.

ClusterMap is applicable across various in situ transcriptomic
methods. Beyond STARmap6, we further applied ClusterMap to
analyze mouse brain tissue from three other in situ tran-
scriptomics methods. Analyses of the imaged transcripts in 2D
mouse hippocampal area CA1 by pciSeq (ISS data)4, 2D soma-
tosensory cortex by osmFISH5, and 3D hypothalamic preoptic
tissues by MERFISH3 are shown respectively in Fig. 5. We used
RNA spot matrices from the published data3–5 and applied
ClusterMap analysis described in Fig. 1b. Despite the differences
in experimental designs and the number of transcript copies
across protocols, ClusterMap identifies cells successfully. As an
example, the ClusterMap-identified cell boundaries over the
DAPI image show accurate cell segmentations in ISS CA1
datasets4 (Fig. 5a). In all three datasets, the identified cell types
and their spatial patterns from ClusterMap were consistent with
published results from conventional segmentation methods or
scRNA-seq (Fig. 5 and Supplementary Fig. 8). Specifically, for ISS
data of the mouse hippocampus, we further conducted tissue
region segmentation and provided detailed statistics of cell type
percentage of each region (Supplementary Fig. 9). We observed
that the fine cell classes of the CA1 region displayed distinct
laminar locations, and pyramidal cells account for 89% cells in
the whole CA1 soma region, which are consistent with results in
pciSeq. Notably, ClusterMap can provide more detailed cell
morphology, increased number of cells, and increased number of
total reads (Supplementary Fig. 8). In conclusion, we analyzed
mouse brain data from four representative in situ transcriptomic
methods3–6 and validated the general applicability of ClusterMap
for different experimental methods with negligible modification
applied.

3D ClusterMap analyses in thick tissue blocks. 3D in situ
transcriptomics data analysis is considered even more challenging
because it is generally infeasible by manual labeling. However, 3D
volumetric imaging and analysis are required to understand the

Fig. 1 ClusterMap: multi-scale spatial clustering analysis of in situ transcriptomic data from subcellular to tissue scales. a Overview of ClusterMap
method. The input is a matrix that contains both spatial and transcript information of mRNA molecules sequenced by in situ transcriptomic methods1–8.
ClusterMap clusters mRNA spots, identifies cells, and profiles them into different cell types as output. b Workflow of ClusterMap method. I, The physical
and neighborhood gene composition (NGC) coordinates of mRNA spots are extracted for each spot (e.g., S1, S2, and S3), and projected to physical and
NGC spaces respectively, which are then computationally integrated. II, Density peak clustering (DPC) algorithm18 is used to cluster mRNA in the P-NGC
space. III, Each spot is assigned to one cluster, representing one cell. IV, Cell types are identified by the gene expression profiles in each cell. c
Representative ClusterMap analysis on STARmap mouse V1 1020-gene dataset6 corresponds to (I–IV) in b. d Representative ClusterMap cell
segmentation analysis on different samples. I, HeLa cell in two-dimensional (2D) space. The white dashed lines highlight the nuclear boundary identified by
the subcellular mRNA distribution from ClusterMap (upper) and DAPI staining (bottom) from the same cell. II. Comparison of ClusterMap (upper) and
marker-seeded watershed (bottom) segmentation in mouse visual cortex cells. III, Mouse cerebellum in 2D, 4050 cells. IV, Mouse ileum in 2D, 5550 cells.
V, Mouse visual cortex in 3D space, 2251 cells. Width: 309 µm, height: 582 µm, depth: 100 µm.
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structural and functional organization of complex organs. In this
regard, exploring ClusterMap’s ability to analyze 3D in situ
transcriptomics is particularly desired. We applied ClusterMap to
two 3D thick-tissue samples: STARmap cardiac organoid 8-gene
dataset27 and STARmap mouse V1 28-gene dataset6 (Supple-
mentary Table 1). We analyzed the 3D data following the sample
protocol described in Fig. 1b. In the 3D cardiac organoid sample,

hierarchical clustering28 separated cells into three categories with
distinct molecular signatures (Fig. 6a–c): CD44 for mesenchymal
stem cells (MSCs), Nanog for induced pluripotent stem cells
(iPSCs) and four genes (TNNI1, MYH7, MYL7, ATP2A2) for
cardiomyocytes (Supplementary Fig. 10a–c). The 100-μm-thick
sample of mouse V1 includes all six cortical layers and the corpus
callosum, in which up to 24,000 cells were identified and 3D
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are from ref. 6. Bottom panels in b, c show the zoomed-in views from the rectangular highlighted regions in upper panels. d The tissue regions are
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three MD-1 type (C1, C2, C3), GT-2 type (C4, C5, C6), and ST-2 (C7, C8, C9) type cells, respectively, with their first tier of neighboring cells highlighted.
Left: schematic; right: cell segmentation map. e Bar plots of the average number of cells per cell type among the first-tier neighbors, revealing clear patterns
of cell-type specific cell–cell communication. Cells in Niche Type I, II, and III show selective association with cell types highlighted in the corresponding
bounding box. The cell types on the axes are denoted by initializes. Data are presented as mean values ± SEM.
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clustered into eleven cell types (Fig. 6d, e and Supplementary
Fig. 10d–g). Our results showed similar spatial distribution with
previously published results, which used the conventional fluor-
escence image segmentation: excitatory neurons exhibited a gra-
dient distribution, with the spatial density of each subtype
gradually decaying to adjacent layers across the entire 3D space;
inhibitory neurons showed a more dispersed distribution; and
non-neuronal cells were largely located in the white matter and
layer 1 (Fig. 6e). We can determine seven 3D tissue regions based

on their corresponding cell-type compositions (Fig.6f, g). We
further characterized 3D cell-cell niche in the mouse V1 and
computed the average compositional neighboring cell types
(Fig. 6h–k). In the minority inhibitory neurons, we observed a
similar self-associative pattern as in previously published
findings6: the nearest neighbor of any inhibitory neuron tends to
be its own subtype. Three adjacency graph examples of inhibitory
neuronal types (Pv, Sst, Vip) are presented in Fig. 6h–j,
respectively.
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Fig. 5 ClusterMap across different spatial transcriptomics methods. a Cell type map of the pciSeq (ISS data) section 4–3 left CA1 dataset4. Scale bar:
200 µm. Insets from top to bottom: convex hull of ClusterMap-identified cells overlapped with the DAPI image and zoom-in cell type map in the black box
highlighted region. Scale bar: 10 µm. b Cell type map of whole osmFISH mouse SSp datasets5. Scale bar: 100 µm. Insets from left to right: raw spatial
transcriptomics data, and corresponding cell segmentation map and cell type map of the black box highlighted region. Scale bar: 10 µm. c The 2D cell type
map of whole MERFISH mouse POA datasets3. Scale bar: 200 µm. Insets from left to right insets: 2D raw spatial transcriptomics data, and corresponding
cell segmentation map and cell type map of the highlighted region. Scale bar: 10 µm.
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Fig. 6 ClusterMap enables 3D in situ transcriptomics analysis. a Raw fluorescent signals of 3D STARmap cardiac organoid 8-gene dataset. Width:
465 µm, height: 465 µm, depth: 97 µm. b, c ClusterMap generates 3D cell segmentation map (b) and cell-type map (c) of (a), which includes 1519 cells.
Insets in (a–c) show zoomed-in views of the highlighted regions. d ClusterMap generates a volumetric cell segmentation map of 3D STARmap mouse V1
28-gene dataset6, showing 24,590 cells. Width: 1545 µm, height: 1545 µm, depth: 100 µm. e The 3D cell type maps of d show the spatial cell type
distribution. f The 3D tissue region map of (e). SC, subcortical. g Bar plots of composition of 11 cell types across 7 tissue regions (layers). h–j Example of
cellular communication at a Pv, Sst, or Vip neuron, respectively. Left: schematics of 3D Delaunay triangulation of the Pv, Sst, or Vip neuron (highlighted in a
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Data are presented as mean values ± SEM.
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Discussion
Spatial RNA localization intrinsically contains information related
to biological structures and cell functions. ClusterMap exemplifies a
computational framework that combines spatial and high-
dimensional transcriptomic information from in situ single-cell
transcriptomics to identify subcellular, cellular, and tissue structures
in both 2D and 3D space. Clustermap jointly clusters the physical
density and gene identity of RNAs, which provides higher accuracy
than clustering only using RNA density or gene identity (Supple-
mentary Fig. 11). Compared with previous methods20 (Supple-
mentary Figs. 1, 2, and 12), ClusterMap showed consistently high
performance in both simulated and biological datasets. In addition,
ClusterMap is widely applicable to various experimental methods
including, but not limited to, STARmap6, MERFISH3, ISS4, and
osmFISH5. As a result, ClusterMap accurately created RNA-
annotated subcellular and cellular atlases from in situ tran-
scriptomic data across diverse tissue samples with different RNA
localization, cell density, morphologies and connections. This will
markedly expand our knowledge of cellular organization across all
scales from subcellular organelles through cell-type maps to organs
and enable further characterization of the local microenvironment
for individual cells. Our initial successful demonstration suggests
that in situ transcriptomic profiles contain unexplored biological
and structural information that can be further extracted by new
computational strategies.

Beyond spatial transcriptomic data, ClusterMap can be generalized
and applied to other 2D and 3D mapped high-dimensional discrete
signals (e.g., proteins or live-cell imaging data)29. In the future, we
envision that ClusterMap can also be extended by combining other
types of biological features (e.g., subcellular organelles, cell shapes,
etc.) to uncover the basic principles of how gene expression shapes
cellular architecture and tissue morphology30.

Methods
Thin-section STARmap data pre-processing. All image processing steps31–45

were implemented using MATLAB R2019b and related open-source packages in
Python 3.6 according to Wang et al.6.

Image preprocessing. For better unity of the illuminance and contrast level of the
raw fluorescence image, a multi-dimensional histogram matching was performed
on each image, which used the image of the first color channel in the first
sequencing round as a reference.

Image registration. Global image registration for aligning spatial position of all
amplicons in each round of STARmap imaging was accomplished using a three-
dimensional Fast Fourier transform (FFT) to compute the cross-correlation
between two image volumes at all translational offsets. The position of the maximal
correlation coefficient was identified and used to transform image volumes to
compensate for the offset.

Spot finding. After registration, individual spots were identified separately in each
color channel on the first round of sequencing. For this experiment, spots of ~6
voxels in diameter were identified by finding local maxima in 3D. After identifying
each spot, the dominant color for that spot across all four channels was determined
on each round in a 5 × 5 × 3 voxel volume surrounding the spot location.

Spots and barcode filtering. Spots were first filtered based on fluorescence quality
score. Fluorescence quality score is the ratio of targeted single-color channel to all
color channels, which quantified the extent to which each spot on each sequencing
round came from one color rather than a mixture of colors. Each spot is assigned
with a barcode representing a specific kind of gene. The barcode codebook that
contains all gene barcodes was converted into color space, based on the expected
color sequence following 2-base encoding of the barcode DNA sequence6. Spot
color sequences that passed the quality threshold and matched sequences in the
codebook were kept and identified with the specific gene that that barcode
represented; all other spots were rejected. The high-quality spots and associated
gene identities in the codebook were then saved out for downstream analysis.

2D manual cell segmentation. Two different methods were used to identify cell
boundaries. First, the manually labeled segmentation masks from the original
reference (Wang et al.6) were obtained as baseline. Second, nuclei were auto-
matically identified by the StarDist 2D machine learning model (Schmidt et al.15)

from a maximum intensity projection of the DAPI channel following the final
round of sequencing. Then cell locations were extracted from the segmented DAPI
image. Cell bodies were represented by the overlay of DAPI staining and merged
amplicon images. Finally, a marker-based watershed transform was then applied to
segment the thresholded cell bodies based on the combined thresholded cell body
map and identified locations of nuclei. For each segmented cell region, a convex
hull was constructed. Points overlapping each convex hull in 2D were then
assigned to that cell, to compute a per-cell gene expression matrix.

Thick-tissue STARmap data pre-processing
3D image registration. The displacement field of each imaging round was first
acquired by registering the DAPI channel of each round to first-round globally by
3D FFT. Each sequencing image was applied with the corresponding transform of
its round.

Spot finding. After registration, individual spots were identified separately in each
color channel on each round of sequencing. The extended local maxima in 3D were
treated as an amplicon location. After identifying each spot, the dominant color for
that spot across all four channels was determined on each round in a 3 × 3 × 3 voxel
volume surrounding the spot location.

Computation of neighborhood gene composition. To compute the NGC com-
position of each spot, we considered a spatially circular (2D) or spherical (3D)
window over every spot (S) and counted the number of each gene-type among
spots in the window. The radius of the window R can be chosen either manually or
by statistics close to the averaged size of organelles and cells for subcellular and
single cell analyses, respectively.

In a dataset with T kinds of sequenced genes, the definition of an NGC vector
for a measured spot i is the number of each gene-type windowed by radius R to the
measured spot i.

NGC ið Þ ¼ <NumGene 1;NumGene 2; ¼ ;NumGene t ; ¼ ;NumGene T> ð1Þ

NumGene t ¼ #fS1t ; S2t ; ¼ ; Sjt ; ¼ ; SNumGene t
t g; t 2 NT ð2Þ

DistancefSjt ; ig<R; t 2 NT ; j 2 NNumGene t ð3Þ

Density peak clustering (DPC). Based on the original DPC algorithm18, we first
computed the two quantities: local density ρ and distance δ of every spot. We
estimated the density by a Gaussian kernel with variance dc. The variance dc is
supposed to be close to the averaged radius R of cells for cellular segmentation. We
can use R as dc. The definition of local density ρ and distance δ for spot i is:

ρi ¼ ∑
j
Iðdij � dmaxÞ*e�ðdij=RÞ2 ð4Þ

δi ¼ minðdijÞ; j: ρj > ρi ð5Þ
Note that I(x) = 1 if x < 0, else I(x) = 0, and dij is the distance between spot i and j.
The optional parameter dmax is a restriction on the maximum radius of the cell. For
the point with the highest density, based on principles of DPC18, we took its
distance value to the highest δ value. Note that for large data sets, the analysis is
insensitive to the choice of dc and results are robust and consistent18.

After computing these two quantities for spots, we generated a multiplication
decision graph by computing γ, the product of ρ and δ and plotting every spot’s γ
value in decreasing order. Since the cell centers have both high local density and
much higher distance at the same time, we chose the points with distinguishably
higher γ values as cluster centers. We chose the ‘elbow point’ as the cutoff point in
the multiplication decision graph where the γ value becomes no longer high and
the change tends to be flat. The number of clusters N is equal to the number of
points prior to the elbow point.

Next, we assigned each remaining point to one of the N clusters respectively in a
descending order of ρ value in a single step manner. Each remaining spot was
assigned to the same cluster as its nearest cluster-assigned neighbor. Each cluster
was regarded as one cell. Finally, we filtered cells by limiting the minimum number
of spots and genes expressed in one cell.

Integration of the physical and NGC coordinate. The physical coordinates
denote the spatial location of spots and the NGC coordinates denote the gene
location of spots in a high-dimensional NGC space. For spot i, its physical and
NGC coordinate are:

P ið Þ ¼ <xi; yi; ðziÞ> ð6Þ

NGC ið Þ ¼ <NumGene 1;NumGene 2; ¼ ;NumGene t ; ¼ ;NumGene T> ð7Þ

Distance-level integration. We computationally integrated the NGC and physical
coordinates into the joint P-NGC coordinate over each spot. Here, to apply the
density peak clustering algorithm, we used inversed Spearman correlation
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coefficient to measure the distance between two NGCs, and combined the physical
and NGC distances information between i and its neighboring spots. We used the
joint distance as the metric to measure relationships between spots. Mathemati-
cally, the parameter dij used in the calculation of ρ and δ in DPC is:

dij ¼
DistancefP ið Þ; PðjÞg

SpearmanCorrfNGC ið Þ;NGCðjÞg ð8Þ

Then we used the combined distances to perform the DPC algorithm for cell
segmentation. Note that sometimes the inconsistency of spot relationships between
physical distance and Spearman correlation may break the physical connectivity of
spots within one cell. In this case, a 0.5 lower boundary cutoff may be applied to
correlation values. Also, we modified the DPC algorithm implementation by using
joint distances to find cell centers and then physical distances to assign other spots
to cell centers to preserve the physical connectivity of cells. This integration
method is universal to any datasets.

Pre- and post-processing for quality control. First, a background identification
step to filter input spots was used as pre-processing. Specifically, regions with low-
density spots (mRNA or DAPI sampled spots) are considered as noisy background
that will be removed for the downstream analysis. Second, the noise rejection based
on cluster halo (i.e. noise) identification in the original density peak clustering
algorithm18 was used as post-processing. Specifically, instead of introducing a
noise-signal cutoff, we first found a border region for each cell, then identified the
point of highest density of spots (mRNA or DAPI sampled spots) within its border
region as ρb, and finally considered points within the cell that show higher density
than ρb as the robust assignment for spots in border region and others as noise.
These quality control steps have been included in the analysis of three repre-
sentative in situ transcriptomic datasets3–5 (Fig. 5).

Subcellular segmentation. To perform subcellular segmentation and construct
nuclear boundaries we first computed the quantity NGC over each spot in an
individual cell. The difference between NGC for subcellular segmentation and that
for cellular segmentation is the radius of the window R. R should be either chosen
manually or by statistics to be close to the averaged size of organelles. In addition,
when the number of sequenced genes is limited, we can compute the NGC using a
mesh graph by Delaunay triangulation of spots that models the relationship
between RNA spots in the cell. A ring of spots that are neighbors of the central spot
in the mesh graph is considered to locate most closely around the central spot. For
a dataset with TR kinds of gene the definition of an NGC vector to the measured
spot i is the composition of gene-types in its closest neighbors:

NGC ið Þ ¼ <NumGene 1;NumGene 2; ¼ ;NumGene t ; ¼ ;NumGene TR> ð9Þ

NumGene t ¼ #fS1t ; S2t ; ¼ ; Sjt ; ¼ ; SNumGene t
t g; t 2 NTR ð10Þ

Sjt connects directly with spot i; 8j 2 NNumGene t g;
Then, similar to distance-level integration, we generated a joint P-NGC

coordinate from the normalized NGC and physical coordinates over each spot:

P � NGC ið Þ ¼ ½NGC ið Þ; λ*PðiÞ� ð11Þ
Here the optional parameter λ can control the influence of physical coordinates,

depending on conditions. We then used K-means clustering19 to cluster spots into
two regions with one for nucleus and one for cytoplasm. Under a chosen λ, K-
means clustering was performed 100 times with different seed each time to find the
consensus clustering results. Finally, we constructed a convex hull based on the
nucleus spots, denoting the nuclear boundary.

Cell type classification. For datasets STARmap mouse V1 1020-gene and
STARmap mouse V1 28-gene, a two-level clustering strategy was applied to
identify both major and sub-level cell types. Processing steps in this section were
implemented using Scanpy v1.6.0 and other customized scripts in Python 3.6 and
applied according to Wang et al., 20186. After filtration, normalization, and
scaling, principal-components analysis (PCA) was applied to reduce the dimen-
sionality of the cellular expression matrix. Based on the explained variance ratio,
the top PCs were used to compute the neighborhood graph of observations. Then
the Louvain algorithm22 was used to identify well-connected cells as clusters in a
low dimensional representation of the transcriptomics profile. Clusters enriched
for the excitatory neuron marker Slc17a7 (vesicular glutamate transporter),
inhibitory neuron marker Gad1, were manually merged to form two neuronal cell
clusters, and then other cells represented non-neuronal cell populations. The cells
were displayed using the uniform manifold approximation and projection
(UMAP) and color-coded according to their cell types. The cells for each top-level
cluster were then sub-clustered using PCA decomposition followed by Louvain
clustering22 to determine sub-level cell types. For dataset pciSeq mouse CA1, the
probabilistic model in pciSeq4 is used to assign ClusterMap-identified cells to
scRNA seq data and find cell-types. For dataset MERFISH mouse POA and
osmFISH mouse SSp, hierarchical clustering is applied to find cell types that
match previous reported cell types. For other datasets, Louvain clustering algo-
rithm is applied to find cell types.

Construct tissue regions
Neighborhood Cell-type Composition (NCC). To construct tissue regions, we
computed a global quantity: Neighborhood Cell-type Composition (NCC) over
each cell (C). We considered a spatially circular (2D) or spherical (3D) window
over every cell and estimated the composition of cell-types in the window. The
radius of the window RC was chosen manually or by statistics of distances between
cells to be as reasonable as possible.

For a dataset with TC kinds of gene, the definition of an NCC vector of the
measured cell i was the composition of cell-types in the defined window that had
radius RC to the measured cell i.

NCC ið Þ ¼ <NumCelltype 1;NumCelltype 2; ¼ ;NumCelltype t ; ¼ ;NumCelltype TC> ð12Þ

NumCelltype t ¼ #fC1
t ;C

2
t ; ¼ ;Cj

t ; ¼ ;C
NumCelltype t

t g; t 2 NTC ð13Þ

DistancefCj
t ; ig<RC; t 2 NTC ; j 2 NNumCelltype t ð14Þ

K-means clustering. Tissue region signatures were identified using information
from both NCC and physical locations of cells. Then we generated a joint P-NCC
coordinate from normalized NCC and physical coordinates over each cell:

P � NCC ið Þ ¼ ½NCC ið Þ; λ*PðiÞ� ð15Þ
Here the optional parameter λ can control the influence of physical coordinates

based on conditions. We then used K-means clustering on these high dimensional
P-NCC coordinates to cluster cells into a pre-defined number of regions. Under a
chosen λ, K-means clustering was performed 100 times with different seed each
time, and the most frequent clustering results with interpretable biological
meanings was regarded as final clustering. Finally, we projected spatially back onto
the cell-type map.

Compare with expert-annotated labels. We evaluated the accuracy of cell
identification by ClusterMap with corresponding eight expert annotated
STARmap6 datasets (Supplementary Fig. 3c). Cells defined by ClusterMap consist
of spots with physical locations while labels in the expert annotated STARmap
datasets are connected components. We defined the accuracy as the percentage of
ClusterMap-identified cells that correctly matched the manual labeled cells. Spe-
cifically, for each labeled connected component, we checked if there was only one
predicted cell by ClusterMap within the region. More than one cell was counted as
over-segmentation and no cell as under-segmentation.

We also compared the correlation of the single-cell gene expression profiles
between ClusterMap and expert-annotated labels in STARmap6 mouse V1 1020-
gene (Supplementary Fig. 5a, b). For the shared 13 cell types identified in cells from
both ClusterMap and manual annotation, we computed the average gene
expression values across 1020 genes. Then we calculated the Pearson correlation
and p-value between two cell-type-by-gene-expression matrices and plotted as
heatmaps in Supplementary Fig. 5. We observed high correlation values and low
p-values in matched cell types in between ClusterMap and expert-annotated labels,
which further validated the performance of ClusterMap.

Performance analysis of cell segmentation in ClusterMap. We further evaluated
the performance of ClusterMap using the following three conditions: (1) only
physical distances, (2) only neighborhood gene composition (NGC) distances, and
(3) joint physical and NGC distances from published STARmap V1 1020-gene
datasets6 with ground truth labels in Supplementary Fig. 11a–e. The results show
that solely using physical distance or NGC distance for cell segmentation, Clus-
terMap is less effective when there is a lack of RNA signals in nuclei or when cells
are crowded as shown in Supplementary Fig. 11a. ClusterMap with an integrative
physical and NGC information can overcome these issues and provide a better cell
segmentation, with lower under-/over- segmentation scores and higher accuracy
(Supplementary Fig. 11a–c). To further examine and highlight the difference, we
built the toy model by assigning random gene identities (Supplementary Fig. 11d)
or identical gene identities (Supplementary Fig. 11e) to RNA spots and then tested
the performance of ClusterMap by using the aforementioned three conditions. As
shown in Supplementary Fig. 11d, e, the results further support our conclusion that
gene identity is important to generate a more accurate cell segmentation result. In
conclusion, ClusterMap incorporates physical and neighborhood gene expression
information to improve cell segmentation performance.

We provided performance analysis of ClusterMap cell segmentation in mouse
placenta tissue where the cells were of vastly different sizes and shape, and cell
radius dc ranged from 28 to 128 pixels (2.65–12.12 µm) (Supplementary Fig. 11f).
With the radius used in ClusterMap increasing from 8 to 178 pixels, the number of
cells decreased from 270 to 220. The accuracy increased first as the radius increased
from 8 to 28 pixels, then remained relatively stable, and finally dropped when the
radius exceeded 148 pixels (Supplementary Fig. 11g, h). The radius of 83 pixel with
the highest accuracy was checked to be a frequent radius for most cells.

Finally, we showed that in the cases when RNAs populate nucleus and cytoplasm,
incorporation of DAPI signal will improve the performance of ClusterMap. We tested
on STARmap mouse V1 1020-gene datasets where thousands of genes have been
in situ sequenced and RNA is enriched in the nucleus (Supplementary Fig. 11i, l). Two
examples of the hippocampus regions comparing the performance of ClusterMap with
and without DAPI signal input are shown in Supplementary Fig. 11i–n. The results
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show that the integration of DAPI signals with RNA signals substantially decreased the
percentage of over-/under- segmented cells and improved accuracy from 0.75 to 0.81
(Supplementary Fig. 11o, p).

Label transfer. Cell type labels from scRNA-Seq dataset were projected onto
spatially resolved cells from STARmap dataset by using the Seurat v3 integration
method according to Stuart et al.24. First, both datasets were preprocessed (nor-
malization and scaling) and a subset of features (e.g., genes) exhibiting high
variability was extracted. For STARmap dataset, all genes profiled were used
whereas in scRNA-Seq dataset, the top 2,000 most variable genes identified by
“FindVariableFeatures” function were used in downstream integration. Then
“FindTransferAnchors” (reduction = “cca”) and Transfer Data functions were used
to map the labels onto spatially resolved cells from the STARmap dataset. After
label transferring, 6672 out of 7224 cells were observed with high-confidence cell
type predictions (prediction score >0.5), and 8 cell types labels were resolved.

Sub-clustering by cell niche analysis. Sub-clustering cell types in STARmap
mouse placenta 903-gene dataset: First, for 7224 ClusterMap-identified cells, we
constructed two matrices: (1) cell by gene matrix, which is 7224 × 903 dimensions;
(2) cell by cell niche composition matrix, which is 7224 × 12 dimensions. Next, for
N cells of a certain cell type T, we got a N × 903 subset matrix and a N × 12 subset
matrix, which provided gene expression and cell niche composition information
about the N cells. Then, Louvain clustering was used to cluster the N × 903 gene
expression matrix into S sub-types, and K-means clustering was used to cluster the
N × 12 cell niche composition matrix into S sub-types. Finally, N cells were mapped
to UMAP based on their gene expression and are colored based on two data
clustering. Adjusted Rand index of two data clustering was computed.

Statistics and reproducibility. In Fig. 2e, the number of cells per cell type in each
region are as follows: from L1 to HPC, eL2/3-A: 3, 164, 22, 12, 6, 1, 0; eL2/3-B: 0,
33, 4, 3, 2, 0, 0, 0;eL4: 0, 7, 135, 7, 0, 0, 0; eL5: 0, 1, 9, 62, 39, 2, 5; eL6: 0, 1, 0, 19,
133, 0, 2; Hpc: 0, 0, 0, 1, 0, 0, 9; Pv: 0, 7, 7, 16, 5, 0, 2; Vip: 4, 15, 2, 2, 1, 1, 2; Sst: 0, 6,
6, 13, 3, 0, 12; Others-In: 0, 0, 3, 6, 1, 2, 6; Astro: 7, 24, 12, 24, 14, 19, 21; Endo: 9,
39, 25, 30, 16, 3, 12; Micro: 6, 20, 6, 12, 3, 8, 7; Other: 4, 41, 22, 50, 20, 6, 7; Oligo: 1,
5, 7, 23, 13, 100, 15; and Smc. 10, 0, 0, 1, 0, 0, 1. In Fig. 3h, the number of cells in
each region is as follows: I: 1457; II: 1796; III: 2816; IV: 777; and V: 378. In Fig. 6g,
the number of cells in each cell type is as follows: Cardiomyocytes, 929; induced
pluripotent stem (iPS) cells, 489; and mesenchymal stem cells (MSC), 101. In
Fig. 6g, the number of cells per cell type in each region are as follows: from L1 to
SC, eL2/3: 31, 1767, 965, 119, 113, 9, 173; eL4: 16, 722, 1596, 168, 89, 4, 136; eL5: 5,
39, 92, 1000, 596, 6, 202; eL6: 11, 74, 191, 541, 2500, 18, 550; Pv: 4, 6, 136, 183, 94,
7, 111; Sst: 97, 72, 101, 196, 81, 11, 136; Vip: 3, 22, 28, 66, 14, 1, 28; Other-In: 30,
78, 74, 83, 112, 39, 68; Astro: 275, 92, 65, 106, 104, 92, 256; and Oligo-A: 28, 33, 33,
80, 95, 1014,183; Oligo-B: 81, 63, 86, 158, 131, 536, 257. In Supplementary Fig. 3c,
the number of manual annotated cells in each sample are as follows: BZ5: 1227;
BZ9: 1318; BZ14:1203; BZ19: 1370; BD2: 951; BD6: 788; BY1: 1653; BY3:1008.

Animal experiment. C57BL/6 (female, 8–12 weeks) mice were purchased from the
Jackson Laboratory (JAX). Animals were housed 2–5 per cage and kept on a
reversed 12 h light-dark cycle with ad libitum food and water. For the mouse
placenta dataset, we used snap-frozen tissue sections from C57BL/6 J x CAST/EiJ
matings and performed STARmap to measure expression of 903 genes on the E14.5
mouse placenta tissue slices. Sex: female. Age: E14.5. Strain: C57BL/6 J x CAST/EiJ
matings. Housing conditions: Mice were housed under standard barrier conditions
at the Whitehead Institute for Biomedical Research. All procedures involving
animals at the Broad Institute were conducted in accordance with the US National
Institute of Health Guide for the Care and Use of Laboratory Animals under
protocol number 0255-08-19. Experimental procedures were approved by the
Institutional Animal Care and Use Committee of the Broad Institute of MIT and
Harvard under protocol number 0255-08-19.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MERFISH mouse POA set3, osmFISH mouse SSp set5, and pciSeq mouse isocortex
set4 are available in Supplementary Information. MERFISH mouse POA set is at http://
zhuang.harvard.edu/merfish.html, osmFISH mouse SSp set is at http://linnarssonlab.org/
osmFISH, and pciSeq mouse hippocampus set is at https://figshare.com/s/
88a0fc8157aca0c6f0e8. The STARmap mouse V1 1020-gene, STARmap mouse V1 28-
gene set, STARmap cardiac organoid set and STARmap mouse placenta are available at
Code Ocean46.

Code availability
ClusterMap is implemented based on MATLAB R2019b and Python 3.6. The following
packages and software were used in data analysis: UCSF ChimeraX 1.0, ImageJ 1.51,

MATLAB R2019b, R 4.0.4, Rstudio 1.4.1106,, Jupyter Notebook 6.0.3, Anaconda 2-2-.02,
h5py 3.1.0, hdbscan 0.8.36, hdf5 1.10.4, matplotlib 3.1.3, seaborn 0.11.0, scanpy 1.6.0,
numpy 1.19.4, scipy 1.6.3, pandas 1.2.3, scikit-learn 0.22, umap-learn0.4.3, pip 21.0.1,
numba 0.51.2, tifffile 2020.10.1, scikit-image 0.18.1, itertools 8.0.0. Codes are available at
Code Ocean https://codeocean.com/capsule/6072400/46. The ClusterMap tool will be
maintained and updated at https://github.com/wanglab-broad/ClusterMap and https://
github.com/LiuLab-Bioelectronics-Harvard/ClusterMap.
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