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Spatiotemporally resolved transcriptomics 
reveals the subcellular RNA kinetic landscape

Jingyi Ren1,2,8, Haowen Zhou2,8, Hu Zeng1,2,8, Connie Kangni Wang    2, 
Jiahao Huang    1,2, Xiaojie Qiu    3, Xin Sui    1,2, Qiang Li4, Xunwei Wu    5, 
Zuwan Lin2,6, Jennifer A. Lo    2, Kamal Maher2,7, Yichun He2,4, Xin Tang2,4, 
Judson Lam1, Hongyu Chen1,2, Brian Li2, David E. Fisher5, Jia Liu    4  
& Xiao Wang    1,2 

Spatiotemporal regulation of the cellular transcriptome is crucial for proper 
protein expression and cellular function. However, the intricate subcellular 
dynamics of RNA remain obscured due to the limitations of existing 
transcriptomics methods. Here, we report TEMPOmap—a method that 
uncovers subcellular RNA profiles across time and space at the single-cell 
level. TEMPOmap integrates pulse-chase metabolic labeling with highly 
multiplexed three-dimensional in situ sequencing to simultaneously profile 
the age and location of individual RNA molecules. Using TEMPOmap, we 
constructed the subcellular RNA kinetic landscape in various human cells 
from transcription and translocation to degradation. Clustering analysis of 
RNA kinetic parameters across single cells revealed ‘kinetic gene clusters’ 
whose expression patterns were shaped by multistep kinetic sculpting. 
Importantly, these kinetic gene clusters are functionally segregated, 
suggesting that subcellular RNA kinetics are differentially regulated in a 
cell-state- and cell-type-dependent manner. Spatiotemporally resolved 
transcriptomics provides a gateway to uncovering new spatiotemporal  
gene regulation principles.

Cell state and function are shaped by the spatiotemporal regulation 
of gene expression. This heterogeneous expression is achieved, in 
part, through precise mRNA metabolism and trafficking over time. 
The ability to systematically profile transcriptomes across time and 
space at a single-cell level from intact cellular networks is critical to 
understanding transcriptional and posttranscriptional gene regula-
tory mechanisms in cells and tissues.

However, current transcriptomic approaches are unable to simul-
taneously capture both the spatial and time dependence of RNA pro-
files. For instance, spatially resolved transcriptomics methods have 

enabled integrated profiling of gene expression from heterogeneous 
cell types in the context of tissue morphology1–7. Nonetheless, these 
spatial transcriptomics approaches alone can provide only static snap-
shots of cells and tissues, while the dynamic flow of gene expression 
cannot be determined8. In contrast, existing metabolic RNA labeling 
approaches have enabled temporal profiling of the nascent single-cell 
transcriptome but lack spatial resolution9–13. In addition, live-cell imag-
ing can directly track RNA trajectory inside cells, but simultaneously 
visualizing multiplexed transcripts remains challenging14. Thus, there 
exists a pressing need for highly multiplexed, spatially and temporally 
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Spatiotemporal evolution of single-cell transcriptome
To assess TEMPOmap in human cells, we mapped a curated list of 991 
genes (981 coding, 10 noncoding RNA) with diversified spatial and 
temporal RNA expression profiles13,16 in HeLa cell cultures (Supple-
mentary Table 1). Then, we designed a pulse-chase experiment with 
1 h pulse labeling and various chase times (0, 1, 2, 4 and 6 h) as well as 
one steady-state reference with 20-h pulse labeling (Fig. 2a), followed 
by the TEMPOmap experiment workflow (Fig. 1b). The barcodes in all 
the samples were sequenced over six rounds of in situ sequencing, fol-
lowed by a final round of subcellular compartment staining (nuclei and 
cytoplasm) to segment cell bodies and assign the subcellular locations 
of amplicons in 19,856 cells in 3D (Extended Data Fig. 2b–d; Methods). 
Notably, we conducted normalization using internal reference genes 
(STARmap-targeting genes; Extended Data Fig. 2e,f) for batch correc-
tion to minimize potential technical variation across timepoints. The 
detection efficiency of TEMPOmap across all genes is around 20.5% esti-
mated by pairwise 20-h labeling and STARmap (Extended Data Fig. 2g).  
Importantly, from 0 to 6 h chase time postlabeling, we observed a 
decline of total RNA reads per cell, a gradual shift of the RNA distribu-
tion from the nucleus to the cytoplasm and further allocation from 
the middle cytoplasmic region to the periphery (Fig. 2c,d), in agree-
ment with the expected trajectory of RNAs (Extended Data Fig. 2h,i). 
Interestingly, a substantial fraction of reads (around 40%) was retained 
in the nucleus even after 6 h. A closer inspection of the retained RNA 
molecules revealed that RNAs with the highest nuclear-to-cytoplasm 
read ratio included long noncoding RNAs (NEAT1, MALAT1), supported 
by deep sequencing of RNA from cellular fractions (Extended Data 
Fig. 3a)17,18. Notably, a group of mRNAs (for example, KIF13A, LENG8, 
CCNL2, COL7A) showed high ratios of nuclear retention (nuc:cyto >2; 
Extended Data Fig. 3a). To rule out the possibility that the observed 
nuclear retention was an artifact of nascent transcript labeling with 
residual ethynyl-UTP (EUTP) during the chase, we utilized the afore-
mentioned inducible firefly luciferase construct. After inducing firefly 
luciferase mRNA transcription by removing EU-containing medium,  
the EUTP incorporation was minimal after 1–2 h as detected by 
TEMPOmap probes against firefly luciferase, suggesting a temporal 
resolution of pulsed labeling of 1–2 h (Extended Data Fig. 3b). Our 
observations validate the previous discovery of nuclear retention of 
mRNA, which may serve as a regulatory role to buffer cytoplasmic gene 
expression noise19,20.

Next, we asked whether the TEMPOmap dataset could resolve the 
heterogeneity of RNA posttranscriptional dynamics in single cells. To 
this end, we pooled all the cells under the 1 h pulse conditions (18,176 
cells) for single-cell resolved dynamic trajectory analysis using poten-
tial of heat-diffusion for affinity-based trajectory embedding (PHATE) 
(Fig. 2e,I)21,22. Our results showed a clear trajectory along the progres-
sion of chase time, which results from differential RNA degradation 
rates among genes and suggests that the temporally resolved single-cell 
transcriptional states could be distinguished and aligned readily in the 
latent space. Overlaying the same coordinates with RNA degradation 
kinetics vectors (represented as the quivers) further recapitulated the 
single-cell trajectory along RNA life cycle progression22–24 (Methods). 
We then investigated how the RNA life cycle defined by the pulse-chase 
timeline aligns with cell-cycle progression. To this end, we classified 
the cells into three cell-cycle phases (G1, G1/S and G2/M) based on their 
nascent expression of marker genes (Extended Data Fig. 3c,d) using 
cell-cycle scoring25 (Methods). Interestingly, the direction of cell-cycle 
progression is orthogonal to that of the pulse-chase timepoint progres-
sion (Fig. 2e,II). This observation suggests that TEMPOmap provided 
independent temporal information regarding the RNA life cycle in 
addition to the cell cycle.

Beyond single-cell analysis, we considered that the TEMPOmap 
dataset could reveal subcellular RNA dynamics. To this end, we 
generated a nucleocytoplasmic gene-by-cell matrix by concatenat-
ing single-cell nuclear expression with cytoplasmic expression for 

resolved sequencing methods that track nascent mRNAs in situ from 
birth to death at subcellular and single-cell resolutions.

Here, to provide a systematic single-cell analysis of RNA life cycle 
in time and space, we introduce TEMPOmap (temporally resolved 
in situ sequencing and mapping)—a method that tracks the spatiotem-
poral evolution of the nascent transcriptomes over time at subcellular 
resolution (Extended Data Fig. 1a). TEMPOmap integrates metabolic 
labeling and selective amplification of pulse-labeled nascent transcrip-
tomes with the current state-of-the-art three-dimensional (3D) in situ 
RNA sequencing at 200 nm resolution within a hydrogel-cell scaffold1  
(Fig. 1a). Using pulse-chase labeling, we were able to simultaneously 
track key kinetic parameters for hundreds to thousands of genes dur-
ing their RNA life cycle, including rates of transcription, decay, nuclear 
export and cytoplasmic translocation. Using these spatiotemporal 
parameters, we show that mRNAs of different genes are differentially 
regulated at different steps of the RNA life cycle and across different 
cell-cycle phases, which ultimately serves gene functions.

Results
TEMPOmap for spatiotemporally resolved transcriptomics
TEMPOmap begins with metabolically labeling cultured cells with 
5-ethynyl uridine (5-EU)13,15, which adds a bioorthogonal chemical 
handle on the labeled mRNAs (Fig. 1b). Next, we designed a tri-probe 
set (splint, padlock and primer) for each mRNA species to selectively 
generate complementary DNA amplicons derived from metabolically 
labeled RNAs (Fig. 1b,c): (1) the splint DNA probe contains 5′ azide- 
and 3′ chain-terminator groups to be covalently attached with the 
5-EU-labeled mRNAs via copper(I)-catalyzed azide-alkyne cycload-
dition (CuAAC; Extended Data Fig. 1b), thus excluding unlabeled 
RNAs from subsequent cDNA amplification; (2) the padlock probes 
recognize mRNA targets with a complementary 20–25 nucleotide 
cDNA sequence, contain gene barcodes and can be circularized when 
the splint probe is in physical proximity on the same RNA; (3) the 
primer probes target the neighboring 20–25 nucleotides next to 
the padlock probes, which serve as the primer to amplify circular-
ized padlocks in situ via rolling cycle amplification (RCA), forming 
cDNA nanoballs (amplicons); in combination, only mRNAs that are 
binding simultaneously to all three types of probes will be amplified, 
therefore allowing selective detection of labeled mRNA population 
in a label- and sequence-specific manner via a two-step thresholding 
strategy (Fig. 1d). Notably, a single gene-targeting padlock probe 
(bi-probe design) cannot achieve specific gene detection (Extended 
Data Fig. 1c), confirming the necessity of the dual gene-targeting 
primer and padlock pair in the tri-probe design1. When all three 
components of the tri-probe are present at the same target tran-
script, we estimated the detection efficiency to be around 50–100% 
of smFISH-HCR (Extended Data Fig. 1d). As a proof of concept, we 
tested representative tri-probes targeted genes with high expression 
and medium-to-low expression in HeLa cells. We found that 5-EU 
labeling and all three probes were necessary for signal amplification, 
demonstrating specific detection of metabolically labeled transcripts 
(Fig. 1d and Extended Data Fig. 1e,f). By targeting chemically induced 
(firefly luciferase) reporter gene (Methods), we further estimated 
the detection efficiency of TEMPOmap tri-probe on EU-labeled tran-
scripts to be around 36% for 20 h EU incubation, and 7% for 1 h EU 
incubation (Extended Data Fig. 1g,h). To enable highly multiplexed 
transcriptome detection, the in situ generated cDNA amplicon librar-
ies are subsequently embedded in a hydrogel matrix for several cycles 
of fluorescent imaging to decode the gene-encoding barcodes via 
SEDAL (sequencing with error-reduction by dynamic annealing and 
ligation) (Fig. 1b and Extended Data Fig. 1i) to simultaneously profile 
hundreds to thousands of genes. After the completion of sequencing 
cycles, the amplicon reads are registered, decoded and subjected to 
3D segmentation for subcellular and single-cell resolved analysis 
(Extended Data Fig. 2a).
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trajectory analysis (Fig. 2f). Apart from recovering the unidirectional 
trajectory of single cells along with the labeling timepoints (timepoint 
III; Fig. 2f), we found a small fraction (n = 137 cells; 2.1%) of G2/M cells 
that formed a narrow trajectory and projected into a distinct space, sug-
gesting that the nucleocytoplasmic RNA distribution in this group of 
G2/M cells differs drastically from the rest of the G2/M cells (Extended 
Data Fig. 3e). We suspected that these spatially distinct cells were the 
cells undergoing mitosis with their unique RNA nucleocytoplasmic 

distribution26. Indeed, the cells on this trajectory had been in differ-
ent phases of mitosis, during which RNAs were mostly evicted from 
the chromatin regions compared with that in G2 cells (Fig. 2f,V). Fur-
thermore, the uniform direction of this distinct trajectory aligns well 
with the time progression of mitosis (Fig. 2f, V, 5–8), indicating that 
the temporal mitotic transitions could be inferred by subcellular  
RNA localization patterns. As a result, by jointly making use of the 
time-gated nucleocytoplasmic distribution, we not only separated 
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Fig. 1 | TEMPOmap enables spatiotemporally resolved transcriptomics. 
a, Overview of TEMPOmap pipeline: nascent RNAs of several timepoints are 
collected and in situ sequenced, followed by spatiotemporal RNA analyses.  
b, TEMPOmap experimental workflow. After 5-EU-labeled cells are prepared,  
a set of tri-probes (splint, primer and padlock) are conjugated or hybridized 
to cellular mRNAs (Extended Data Fig. 1b,i for more details), resulting in the 
enzymatic replication of each padlock sequence into cDNA amplicons. The 
amplicons are anchored in situ via a functionalized acrylic group (blue) to 
a hydrogel mesh to create a DNA-gel hybrid (blue wavy lines). The five-base 
barcode on each amplicon is read out by six rounds of SEDAL. Thus, multiplexed 

RNA quantification reveals gene expression in nascent subcellular locations. 
c, DNA tri-probe design rationale. The generation of an amplicon requires the 
presence of splint, circularized padlock and primer probes in proximity.  
d, Left, schematics and representative fluorescent cell images of negative control 
experiments of c, showing three-part probe requirement for signal amplification. 
mRNA_I represents ACTB and mRNA_II represents GAPDH. All four images 
show ACTB (red) mRNA in HeLa cells (DAPI in blue). Right, quantification of cell 
images showing the average amplicon reads per cell (n = 6 images were measured 
containing 310, 585, 386 and 421 cells for each condition from left to right, 
respectively). Two-tailed t-test. Data shown as mean ± s.d. Scale bar, 10 µm.
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G2 and M cells but also traced the trajectory of mitosis on the gene 
expression space, during which there is drastic RNA eviction from 
chromosomes in M cells27.

Subcellular RNA kinetic landscape across RNA lifespan
To further quantify the kinetics during different stages of transcrip-
tion and posttranscriptional processing, we estimated four key kinetic 
constants for all detected transcripts across RNA lifespan: synthesis 
(α), degradation (β), nuclear export (λ) (Fig. 3a) and cytoplasmic trans-
location (γ) (Fig. 3b). We noticed a correlation between physical cell 
volumes and number of single-cell RNA reads (Extended Data Fig. 4a,b). 
To correct for the potential bias caused by cell volume, we estimated α 
and β values based on the averaged concentrations of each RNA species 
(reads per voxel) across single cells (Extended Data Fig. 4c). Built on 
the previous studies17,28, our model assumed zero-order kinetics for 
α and first-order kinetics for β29,30. In addition, a threshold of fitting β 
for each gene (936 genes out of 991 genes with the coefficient of deter-
mination R2 ≥ 0.5) was applied for quality control purposes (Extended 
Data Fig. 4c–f). We further benchmarked our results against published 
single-cell sequencing datasets using EU labeling (scEU-seq13), which 
showed a moderate correlation of 0.30 (Pearson coefficient r) for α and 
β values (Extended Data Fig. 4g,h), which is comparable with two inde-
pendent single-cell sequencing datasets (scEU-seq versus scNT-seq10, 
r = 0.39; Extended Data Fig. 4i). We attributed the variation across 
TEMPOmap, scEU-seq and scNT-seq to technical variations between 
imaging-based versus sequencing-based readout, different cell lines 
used in the studies and different pulse-chase experimental design. In 
parallel, we estimated the nuclear export rate (λ) based on the change 
in the ratios of nuclear-to-total reads over time. We noted that the esti-
mation of λ might also be complicated by nuclear and cytoplasmic 
RNA degradation, and thus λ more accurately describes the change 
in the homeostasis of nucleocytoplasmic RNA distribution. Last, to 
systematically evaluate the relative positions of each RNA species in 
physical cytoplasmic space in 3D over time, we derived a distance ratio 
(DR)-based method (Extended Data Figs. 2d and 4c; Methods), where 
the cytoplasmic translocation rate (γ) was calculated by tracking the 
change of DR over time (Fig. 3b).

Notably, while nuclear export of RNA had been considered to 
be a constant in a previously published RNA velocity-based model 30, 
our analysis indicates that λ varies substantially among different RNA 
species, suggesting that homeostasis of nucleocytoplasmic transcript 
distribution is maintained by gene-specific regulatory mechanisms 
(Extended Data Fig. 4j). In addition, to our knowledge this is the first 
time it has been possible to systematically study the cytoplasmic trans-
location of RNAs of a large number of genes simultaneously at 1 h 
resolution. For most genes, γ > 0 (Extended Data Fig. 4k,l), implying 
transcript translocation from the nuclear membrane to the cytoplas-
mic membrane. However, we found a small subset of genes with γ < 0 
(R2 > 0.5) that were significantly enriched in secreted and organel-
lar proteins (Extended Data Fig. 4m), indicating possible relocation 
events from the cytosol to the endoplasmic reticulum (ER) or faster 
degradation rates for non-ER-anchored RNAs than ER-anchored ones. 

Further studies are required to investigate the kinetic mechanism that 
directs the cytoplasmic translocation of different RNA molecules 
(Extended Data Fig. 4n). Additionally, we observed that larger cells (as 
measured by cell volume) tend to exhibit slower synthesis (α) and deg-
radation (β), but faster cytoplasmic translocation (γ) than small cells 
regardless of cell-cycle stages, whereas RNA export exhibits distinct 
trends in each cell-cycle phase (Extended Data Fig. 5a–d), indicating 
cell-size-dependent regulation of RNA kinetics.

Next, we asked whether any of the four RNA kinetic parameters 
were intrinsically coupled. Here, we performed pairwise correlations 
of the four parameters across 936 genes. We found that the overall 
correlation between each pair of parameters was weak (ρ < 0.1; Fig. 3c),  
suggesting that the kinetic parameters of RNA transcription, posttran-
scriptional processing13 and allocation are relatively independent16. 
We then explored the correlations of these kinetic parameters across 
the cell cycle. To this end, we performed a further pairwise correlation 
analysis of the four parameters across different genes at three cell-cycle 
phases (800 genes passed quality control; Fig. 3d; Methods). Interest-
ingly, for each parameter, depending on its temporal sequence in the 
RNA life cycle, a trend of weakening correlations in cell-cycle phases 
emerged: at the early stage of RNA production, the synthesis rates α 
were highly correlated (ρ = 0.9–1.0; Extended Data Fig. 5e); during 
posttranscriptional processing in the nucleus, λ in the three phases 
have moderate correlations (ρ = 0.4–0.5; Extended Data Fig. 5g); near 
the end of the RNA life cycle, cytoplasmic translocation γ have much 
weaker correlations (ρ = 0–0.2; Extended Data Fig. 5h). This observa-
tion suggests that RNA metabolism and trafficking of different genes 
become less synchronized and increasingly heterogeneous from the 
upstream to the downstream stages of the RNA life cycle, potentially 
due to gene-specific and cell-cycle-dependent regulation.

Given the cell-cycle-resolved RNA kinetic landscape, we further 
investigated how RNAs could be dynamically ‘sculpted’ to fine-tune 
the temporal RNA expression profiles. First, we identified potentially 
coregulated RNAs through a pairwise single-cell covariation analysis 
of 936 genes from the aforementioned pulse-chase HeLa cell samples 
(1 h pulse, 0–6 h chase; Extended Data Fig. 6a, left). Using the matrix 
of pairwise correlation single-cell expression variation combining 
all timepoints (Methods), we identified four groups of genes with 
substantial intragroup correlation, indicating potential gene coregula-
tion patterns (Group 1–4; Extended Data Fig. 6a, right). Notably, while 
these genes are enriched with cell-cycle-related functions (Extended 
Data Fig. 6b), the four groups differ significantly in several stages of 
RNA kinetics (Extended Data Fig. 6c). Next, we repeated the single-cell 
covariation analysis to each individual timepoint using the same gene 
order, and found that the shift in the covariation pattern of each group 
varies from 0 to 6 h (Extended Data Fig. 6d): Group 1 showed decreas-
ing covariation pattern from 0 to 2 h postsynthesis; Group 2 showed 
consistently high expression covariation across time; in contrast, the 
covariation patterns of Group 3 and 4 emerged gradually from 2 h to 
6 h postsynthesis. This observation suggests that, at the RNA level, 
cell-cycle progression is shaped jointly by an orchestration of genes 
with distinct transcriptional and posttranscriptional kinetic features.

Fig. 2 | Spatiotemporal tracing of single-cell transcriptome. a, Pulse-
chase experiment design on HeLa cells. For the first five timepoints, we used 
1 h metabolic labeling (pulse) followed by 0, 1, 2, 4 and 6 h chase. At the last 
timepoint, we labeled the cells metabolically for 20 h. All cells were then 
processed by TEMPOmap workflow measuring 998 genes. b, RNA reads (cDNA 
amplicons) per cell for each pulse-chase timepoint. n = 1,425; 4,024; 4,421; 
3,521; 3,727 and 2,303 cells from different pulse-chase timepoints (left to 
right). Boxplots are defined in terms of mean (center line), 25–75% percentile 
(bounds of box), lower and upper quartile (whiskers) and outlier values (dots). 
c, 3D fluorescent images of inprocess TEMPOmap with zoomed-in views of 
representative single cells in sequencing cycle 1 at each timepoint. Z-stack range, 
10 µm. Scale bar, 10 µm. d, Top, stacked bar plot summarizing the fraction of 

reads in each subcellular region of all cells at each timepoint. Data are presented 
as mean values ± s.d. The statistics compare the fractions of nuclear reads (blue) 
across the first five timepoints. ***P < 0.001, Kruskal–Wallis test with post hoc 
Tukey’s honestly significant difference test. The number of cells (n) at each 
timepoint is shown. Bottom, subcellular region assignment (nuclear, middle 
and periphery) of one representative cell. e–f, TEMPOmap single-cell (e) or 
nucleocytoplasmic (f) RNA measurements rendered as a visualization by PHATE 
and colored by pulse-chase timepoints (I, III) or cell-cycle marker gene expression 
(II, IV). Black arrows inferred by RNA degradation vectors indicate the directions 
of chase time progression. Bottom row, representative raw images of G2/M phase 
cells separated on PHATE coordinates. All images show mRNAs (white) in HeLa 
cells (DAPI in blue). Scale bar, 15 µm.
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Differential RNA kinetic strategies by gene function
After recognizing the aforementioned four gene groups whose RNA 
temporal profiles coupled with cell-cycle phasing, we asked whether 
such correspondence between RNA kinetics and gene functions 

globally exists for other genes. To identify gene modules based on their 
shared kinetic patterns in the context of RNA life cycle and cell cycle, 
we first clustered 800 genes using the 12 parameters (four kinetic con-
stants across three cell-cycle stages; Supplementary Table 2; Methods). 
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The clustering analysis revealed five kinetic gene clusters of distinct 
kinetic landscapes (Fig. 4a) that also had distinct single-cell expres-
sions (Extended Data Fig. 6e) and subcellular distributions over time 
(Extended Data Fig. 7a,b). Importantly, gene ontology (GO) analyses 
showed that the five clusters associate with distinct biological and 
molecular functions (Fig. 4b). For example, genes with unstable and 
slowly exported RNAs were strongly enriched in metal-binding and tran-
scription factor binding activities (Cluster 1, n = 231 genes); genes with 
high RNA stability and moderate export rate (Cluster 3, n = 153 genes) 
were enriched in hydrolase and ATP-binding activities. In contrast, 

genes with rapid synthesis and greater RNA stability (Cluster 5, n = 86 
genes) were enriched in constitutive cellular processes like mRNA splic-
ing, translation and mitochondrial functions. We reasoned that these 
housekeeping genes tend to produce abundant and stable RNAs for a 
longer persistence of genetic information28.

Notably, while Cluster 2 (n = 205 genes) and 4 (n = 125 genes) are 
both characterized by slower synthesis, moderate degradation and 
faster export, they differ significantly in cytoplasmic translocation 
rates (γ), which are cell-cycle-dependent. In the G1 phase, RNAs of 
Cluster 2 exhibited higher γ than in other cell-cycle phases, whereas 
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Cluster 4 showed the opposite trend (Fig. 4a, right). We found that 
Cluster 2 is enriched in DNA damage and repair genes while Cluster 4 
genes are functionally related to organellar and membrane-bound 
proteins (Fig. 4b). Closer examination of the genes in Cluster 4 revealed 
that most (109 out of 125 genes) have negative γ values in G1, indicating 
an overall reverse direction of translocation in the G1 phase. Previous 
research has shown that many mRNAs encoding membrane-bound 
proteins were anchored to the surface of ER for localized protein syn-
thesis31. We reasoned that the RNAs encoding these membrane proteins 
might also be regulated at the dynamic level, executed by both spatial 

and temporal localization control in a cell-cycle-dependent manner. 
Given that duplication of organelles and cell expansion are the major 
activities at G1 phase, our discovery suggests that ER-localized protein 
synthesis may be more active in G1, either by RNA transport towards the 
ER or local degradation of non-ER-anchored RNAs in the cell periphery 
(Fig. 4d and Extended Data Fig. 8a–c). Our proposed model provides a 
more comprehensive picture of the regulation dynamics of membrane 
protein at the RNA processing level from both spatial and tempo-
ral perspectives. Whereas the mechanism underlying our observed 
translocation data is still open to further investigation, these results 
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highlight the importance of regulating the spatiotemporal localization 
of transcripts that carry different genetic information.

Next, we examined the RNA kinetic landscape in the context of 
N6-methyladenosine modifications (m6A)—a critical posttranscrip-
tional chemical modification of RNA that plays vital physiological 
roles32,33. RNA methylation m6A is known to mediate a wide range of 
posttranscriptional gene regulation. However, the full landscape of 
the spatiotemporal dynamics of m6A-RNA has not been addressed 
systematically. To this end, we separated the genes encoding RNAs 
with and without m6A modifications by previous m6A profiling stud-
ies34,35 (m6A- or non-m6A-RNAs; Extended Data Fig. 8d; Methods). We 
observed that m6A-modified RNAs were significantly less stable than 
non-m6A-RNAs (higher β; Fig. 4e), consistent with an independently 
published dataset13 (Extended Data Fig. 8e). In addition, we observed 
the same trend when comparing the degradation constants in differ-
ent cell-cycle phases, suggesting that regulation of m6A-methylated 
RNA decay is persistent throughout the cell cycle (Extended Data 
Fig. 8f). Together, these data demonstrate that TEMPOmap can be 
used to study spatiotemporal transcriptomics in combination with 
posttranscriptional modifications. TEMPOmap has the potential to 
facilitate multimodal transcriptomic analyses at single-cell and sub-
cellular resolution.

Applicability in human iPSC and primary cell cultures
Finally, we investigated whether we could use TEMPOmap to study 
the spatiotemporal dynamics of mRNAs at different stages in hetero-
geneous cell types (Fig. 5 and Extended Data Figs. 9 and 10). To this 
end, we designed two sets of tri-probes and applied TEMPOmap to 
two different biological systems: human induced pluripotent stem 
cell-derived cardiomyocytes (hiPSC-CMs, mapping 64 genes; Fig. 5a) 
and primary human skin cells derived from neonatal foreskins (map-
ping 256 genes; Fig. 5g). For each of the cultures, we performed a pulse 
experiment using 5-EU for 2 h, followed by chase with 0, 2, 4 and 6 h. 
We then performed TEMPOmap cDNA amplicon library preparation, 
in situ sequencing, subcellular segmentation in 3D and data process-
ing for both datasets (Extended Data Figs. 9b and 10a; Methods).  
As with the HeLa cells, we observed strong spatial relocation of  
RNAs in both hiPSC-CMs and primary skin cell cultures across the chase 
time (Fig. 5b,h).

All the cells (under 2 h pulse conditions) passed the quality control 
in hiPSC-CMs (n = 6,769 cells) and primary skin cell culture (n = 8,187 
cells) were represented on the UMAP space based on single-cell RNA 
expression. Using the known marker genes for each cell type, we iden-
tified the populations of cardiomyocytes and cardiac fibroblasts in 
hiPSC-CMs culture, and melanocytes, keratinocytes and fibroblasts 
in skin cell culture as visualized on the UMAP plots (Fig. 5c,e,i,k). We 
then recapitulated the trajectories of single-cell transcriptomic pro-
files within each cell type across various chase times (Fig. 5d,j). Here, 
we observed a clear shift in RNA expression in the low-dimensional 
space from earlier to later timepoints for different cell populations 
when overlaid with streamlines indicating global transcriptomic shifts, 
which demonstrated that the temporally resolved RNA expression 
could also be distinguished in different cell types. In addition to the 
time-resolved transitions on the gene expression space, we could also 
observe physical transitions of the labeled transcripts in the three par-
titioned subcellular spaces (nuclei, middle and periphery) across time, 
when combining all the cells (Extended Data Figs. 9c and 10b) and when 
separating into individual cell types (Extended Data Figs. 9d and 10c).

To quantitatively evaluate the patterns of spatiotemporal RNA 
kinetics in all these cell types, we estimated synthesis (α), degrada-
tion (β), nuclear export (λ) and cytoplasmic translocation (γ) for all 
the genes passed the quality control in each cell type. Next, to further 
explore whether any of the kinetic parameters are cell-type depend-
ent, we clustered 53 genes in the hiPSC-CMs dataset based on eight 
kinetic constants across two cell types (Extended Data Fig. 9e and 

Supplementary Table 3), and 245 genes in primary skin cell culture data-
set based on 12 kinetic constants across the three cell types (Extended 
Data Fig. 10d and Supplementary Table 4). For the hiPSC-CMs dataset, 
we identified three kinetic gene groups (Fig. 5f), each with distinct 
combinations of kinetic regulation that contributed to varying RNA 
expression levels across chase time (Extended Data Fig. 9f). We also 
observed that cytoplasmic translocation (γ) generally has higher vari-
ations between CMs and cardiac fibroblasts than synthesis (α), degra-
dation (β) and nuclear export (λ) (Fig. 5f), which may be related to the 
distinct cell morphologies of these two cell types. Interestingly, we also 
observed that cell-type markers are scattered throughout different 
kinetic gene clusters, yet they exhibit faster synthesis, faster nuclear 
export and slower degradation rates in their corresponding cell types 
than the other cell types (Extended Data Fig. 9g). Since cell-type marker 
genes are most correlated with specialized cell functions, this suggests 
that RNA kinetic regulation might prioritize the expression of most 
functionally important genes or facilitate the clearance of leaky tran-
scripts from less functionally relevant genes (Extended Data Fig. 9h,i).

For the primary skin cell culture dataset, the kinetic clusters also 
showed consistent RNA dynamic patterns within each gene cluster 
across different cell types (Fig. 5l), suggesting that RNA kinetic param-
eters reflect intrinsic properties of each gene shared by different cell 
types. However, we also observed cell-type-specific synthesis and 
degradation rates of cell-type gene markers for melanocytes, fibro-
blasts and keratinocytes, which is consistent with our observations in 
cell-type markers of iPSC dataset (Fig. 5m and Extended Data Fig. 10e,f). 
GO analysis of each kinetic gene cluster revealed that transcripts with 
high degradation and low nuclear export rate are enriched in cytosolic 
proteins; genes with moderate degradation and cytoplasmic translo-
cation are enriched in transmembrane proteins and immunity; genes 
with lower degradation and moderate translocation are enriched in the 
ribosome and cell structures (Fig. 5n). These results suggest that cells 
use distinct combinations of multistep kinetics for functionally distinct 
genes, which shapes the RNA expression levels of the gene clusters 
across time (Extended Data Fig. 10g,h). Overall, our result in primary 
cell cultures echoed the previous observations in HeLa cells that RNAs 
of different molecular and physiological functions are dynamically 
‘sculpted’ across their lifetime.

Discussion
TEMPOmap is a new in situ transcriptomic platform that simultane-
ously profiles time- and space-resolved transcriptomics in single cells, 
a multimodal single-cell transcriptomics technology at a subcellular 
resolution that has not been achieved before. We demonstrated its abil-
ity to systematically detect the subcellular allocation and cytoplasmic 
translocation of transcripts over time. More importantly, our study 
provided a full landscape of RNA subcellular kinetics at the single-cell 
level and revealed how RNA kinetics contribute to cellular functions 
such as cell-cycle progression. We observed a strong correlation of RNA 
kinetic patterns and the molecular functions of genes, suggesting that 
this function-oriented regulation of RNA life cycle may have evolved 
to control spatiotemporal gene expression in a precise and economic 
way28. We also demonstrated the broad applicability of TEMPOmap 
to human iPSC-derived cell culture and primary cell culture, revealing 
cell-type-dependent regulation of RNA kinetics. From our analyses of 
HeLa cells, hiPSC-CMs and primary skin cell cultures, we observed that 
RNA kinetics generally reflect intrinsic features for each gene grouped 
by their molecular functions. However, the kinetics parameters of genes 
that are key to specialized cellular functions are strongly dependent 
on cell state and cell type, emphasizing the importance of studying 
subcellular RNA kinetics at the single-cell level. It is noteworthy that 
the detection efficiency of TEMPOmap may have sequence biases (for 
example, U-rich sequence), since it requires the metabolic labeling of 
U analogs and relies on DNA probe design. In future work, TEMPOmap 
can be combined with high-throughput single-cell functional genomics 
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Fig. 5 | TEMPOmap reveals differential RNA kinetics in heterogeneous cell 
types. a, Schematics of hiPSC-CMs with mixed populations of CMs and cardiac 
fibroblasts. b, Representative fluorescent images of inprocess TEMPOmap 
with zoomed views of representative single cells of cycle 1 at each timepoint 
of hiPSC-CMs. Scale bar, 10 μm. c,d, Single-cell RNA UMAP embedding of 
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each identified cell type (further separated into chase timepoints) in c. Color in 
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expression for each identified cell type (further separated by chase timepoints) 
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n, Pathway enrichment analysis of genes in each cluster in l using DAVID.
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(for example, CRISPR screens36) to determine key molecular factors 
that impact the kinetic landscape of RNA life cycle. With optimiza-
tion of metabolic labeling conditions15,37,38 and integration of various 
molecular probing schemes, this methodology can be adapted for ex 
vivo or in vivo tissue samples to systematically profile dynamic events 
in tissue biology. Furthermore, such spatiotemporally coordinated 
transcriptomic patterning may shed light on the molecular mecha-
nisms of various biological phenomena, including development and 
pattern formation, learning and memory, biological clocks, and disease 
pathogenesis and progression.
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Methods
Chemicals and enzymes
Chemicals and enzymes: Gel Slick Solution (Lonza, catalog no. 
50640); PlusOne Bind-Silane (GE Healthcare, catalog no. 17-1330-
01); poly-d-lysine solution, 50 μg ml–1 (ThermoFisher, catalog no. 
A3890401); ultrapure distilled water (Invitrogen, catalog no. 10977-
015); glass bottom 24-well plates (Greiner Bio-One, catalog no. 662892, 
and MatTek, catalog no. P24G-1.5-13-F); no. 2 Micro coverglass, 12 mm 
diameter (Electron Microscope Sciences, catalog no. 72226-01); 
16% paraformaldehyde (PFA), EM grade (Electron Microscope Sci-
ences, catalog no. 15710-S); methanol for high-performance liquid 
chromatography (Sigma-Aldrich, catalog no. 34860-1L-R); PBS, 7.4 
(Gibco, catalog no. 10010-023 for 1× and catalog no. 70011-044 for 
10×); Tween-20, 10% solution (Calbiochem, catalog no. 655206); Tri-
ton X-100, 10% solution (Sigma-Aldrich, catalog no. 93443); Omin-
iPur Formamide (Calbiochem, catalog no. 75-12-7); 20× SSC buffer 
(Sigma-Aldrich, catalog no. S6639); ribonucleoside vanadyl complex 
(New England Biolabs, catalog no. S1402S); yeast tRNA (Invitrogen, 
catalog no. AM7119); SUPERase·In (Invitrogen, catalog no. AM2696); 
5-EU (Invitrogen, catalog no. E10345); 1.5× Click buffer (Lumi-
probe, catalog no. 61150); l-ascorbic acid (Sigma-Aldrich, catalog 
no. A5960); T4 DNA ligase, 5 Weiss U μl–1 (Thermo Scientific, cata-
log no. EL0011); Phi29 DNA polymerase (Thermo Scientific, catalog 
no. EP0094); 10 mM dNTP mix (Invitrogen, catalog no. 100004893); 
BSA, molecular biology grade (New England Biolabs, catalog no. 
B9000S); 5-(3-aminoallyl)-dUTP (Invitrogen, catalog no. AM8439); 
BSPEG9 (Thermo Scientific, catalog no. 21582); methacrylic acid NHS 
ester, 98% (Sigma-Aldrich, catalog no. 730300); dimethylsulfoxide, 
anhydrous (Molecular Probes, catalog no. D12345); acrylamide solu-
tion, 40% (Bio-Rad, catalog no. 161-0140); Bis Solution, 2% (Bio-Rad, 
catalog no. 161-0142); ammonium persulfate (Sigma-Aldrich, catalog 
no. A3678); N,N,N′,N′-tetramethylethylenediamine (Sigma-Aldrich, 
catalog no. T9281); OminiPur SDS, 20% (Calbiochem, catalog no. 7991); 
Antarctica Phosphatase (New England Biolabs, catalog no. M0289S); 
4,6-diamidino-2-phenylindole (DAPI) (Molecular Probes, catalog no. 
D1306); Flamingo Fluorescent Protein Gel Stain (Bio-Rad, catalog 
no. 1610491); DMEM medium (ThermoFisher, catalog no. 11995); FBS 
(HyClone, catalog no. SH3007103); Lipofectamine RNAiMAX (Inv-
itrogen, catalog no. 13778075); azidobutyric acid NHS ester (Lumi-
probe, catalog no. 63720); Bio-Spin P-6 Columns, SSC buffer (Bio-Rad, 
catalog no. 7326002); Human Melanocyte Medium (Gibco, catalog no. 
M254CF500); Human Melanocyte Growth Supplement (Gibco, catalog 
no. S-002-5); Y-27632 (Sigma, catalog no. Y0503); HCR RNA-FISH Buff-
ers and Amplifiers (Molecular Instruments)39.

Design and construction of TEMPOmap probes
TEMPOmap tri-probes were designed to contain a set of three separate 
DNA oligonucleotide probes: splint, primer and padlock. DNA splint 
was prepared by incubating 40 µM 5′ amino-modified splint oligo 
(manufactured by Integrated DNA Technologies (IDT)) with 25 mM 
azidobutyric acid NHS ester (azide-NHS) in 0.1 M NaHCO3 at room tem-
perature overnight. The product was purified by ethanol precipitation 
and run through Bio-Spin P-6 Columns (SSC buffer).

A representative sequence graph is shown in Extended data Fig. 1i. 
The probes were designed as follows: (1) The 5′ azide-modified splint is 
divided into two regions: a linker containing 50 adenosine nucleotides 
connected to a 12-nucleotide splint-padlock annealing sequence. To be 
protected from enzymatic amplification, the splint contains a 3′ termi-
nal inverted dT and the phosphorothioate bonds on the last three nucle-
otides at the 3′-end of the oligo. The splint-padlock annealing sequence 
enables the hybridization of the splint with padlock on the same RNA, 
creating a double-strand DNA region with a ‘nick’ that can be sealed in 
the ligation step. (2) The 5′ phosphorylated padlock is comprised of the 
complementary splint-padlock annealing sequence, two regions of the 
same 5-nucleotide barcode, a 10-nucleotide primer-padlock annealing 

sequence, a 19–25 nucleotide target region for specific RNA binding and 
several short linkers. (3) The primer contains another 19–25 nucleotide 
target region, 2-nucleotide mismatch bases, a 5-nucleotide linker and a 
5-nucleotide gene-unique sequence that is reverse complementary to 
the barcode on the matching padlock. The two target regions in each 
set of the primer and the padlock reside one to two bases next to each 
other on the same mRNA species. Splint, primer and padlock probes 
targeting ACTB mRNA are included in Supplementary Table 5-1.

The detailed procedure of target region selection on primer 
and padlock was applied as previously described1. In brief, we only 
considered the shortest isoforms and the coding regions except for 
noncoding RNAs. Picky v.2.240 was used to design the target sequence 
on each probe pair with the length range of 40–46 nucleotides and 
six sequences were selected for each gene. The cDNA sequences of 
the selected regions were split into halves of 20–25 nucleotides sepa-
rated by 0–2 nucleotides, which contained the best match of melting 
temperature. The probes were pooled, ordered and manufactured by 
IDT. The reading and decoding probes used in SEDAL sequencing were 
designed and ordered according to Wang et al.1.

For constructing TEMPOmap bi-probes (splint and padlock), the 
design of the splint probe was the same as described in the tri-probe 
section. Each padlock probe contains a 40-nucleotide target region 
selected as described in the tri-probe design and five sequences were 
selected for each gene.

TEMPOmap gene selection
For 1000-gene in HeLa cells, we selected the transcripts based on the 
following criteria: (1) the expression of each transcript is above 20 reads 
per kilobase per million reads mapped from a few RNA-seq data33,34,41; 
(2) transcripts that have diverse subcellular locations16; (3) transcripts 
that mark specific cell-cycle phases25 and (4) transcripts that are known 
to be m6A-modified and m6A-devoid. We did not consider the length of 
transcripts as our selection criteria.

For 64-gene in hiPSC-CM culture and 256-gene in primary skin 
culture, we selected transcripts based on cell-type gene markers as well 
as other genes that we found to be cell-type-specific and interesting in 
the biological system from the previous RNA-seq reports (skin 256-gene 
list: Joost et al.42; Ji et al.43; Tirosh et al.25; Jerby-Arnon et al.44. hiPSC-CMs 
64-gene list: Friedman et al.45; Cui et al.46; Lee et al.47; Biendarra-Tiegs 
et al.48; Zhao et al.49).

HeLa cell lines and culture conditions
The human HeLa cell line used in this study was purchased from ATCC 
(CCL-2) and grown in DMEM (Gibco, catalog no. 11995) medium sup-
plemented with 10% FBS. The cells were plated on 24-well pretreated 
glass bottom plates (treatment described in next section) and grown 
at 37 °C with 5% CO2 before the TEMPOmap experiment.

hiPSC culture and differentiation
hiPSCs were purchased from the WiCell research institute. Authentica-
tion and testing for the mycoplasma were conducted by WiCell. hiPSC 
cells were maintained on Matrigel-coated plates at 37 °C and 5% CO2 
with Essential 8 medium (Gibco). hiPSC-CMs were generated based 
on methods described previously with minor modification44,45. Briefly, 
hiPSCs were cultured in a six-well plate with E8 medium for 3–4 days 
to 70–80% confluency. Next, the E8 medium was removed. RPMI 1640 
medium plus 1% B27-insulin and 12 μM CHIR99021 was added for car-
diac differentiation (day 0). On day 1, the medium was changed to RPMI 
1640 medium plus 1% B27-insulin. On day 3, the medium was changed 
to RPMI 1640 medium plus 1% B27-insulin and 5 μM IWR1. On day 5, 
the medium was changed to RPMI 1640 medium plus 1% B27-insulin. 
On day 7, the medium was changed to RPMI 1640 medium plus 1% B27. 
The medium was then replaced with fresh RPMI 1640 medium plus 
1% B27 every other day. The hiPSC-CMs started beating from day 8 or 
day 10. Then, hiPSC-CMs (day 29 of differentiation) were reseeded on 
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the Magrigel-coated 24-well plate in RPMI 1640 medium plus 1% B27 
and rock inhibitor (RI, 5 μM), and left for another 2 days for TEMPOmap 
data collection; 1 mM EU was used to metabolically label the cells. All 
experiments involving human cells were approved by the Harvard 
University IRB and ESCRO committees (IRB20-0249).

Isolation and culture of primary human skin cells
Isolation and culture of primary human skin cells followed previously 
published protocols50,51. Briefly, newborn foreskin tissues were incu-
bated with 2.5 mg ml–1 Dispase solution at 4 °C overnight. The follow-
ing day, the epidermis and dermis were separated from each other 
with fine forceps. For isolation of keratinocytes (epidermal cells) and 
melanocytes, the epidermal tissues were incubated with 0.05% trypsin 
for 15–30 min at 37 °C, then neutralized with 10% FBS in DMEM, filtered 
(100 μm filter, Millipore), centrifuged and rinsed with 10% FBS-DMEM 
to obtain cell pellets that contained both keratinocytes and melano-
cytes. The cell pellets were resuspended and seeded with the human 
melanocyte medium plus human melanocyte growth supplement 
and 10 mM Y-27632. For isolation of dermal cells, dermal tissues were 
chopped and incubated with type I collagenase (2.5 mg ml–1) at 37 °C 
for 1 h, then the digestion was neutralized with 10% FBS in DMEM. 
The digested cell solutions were filtered, centrifuged and washed 
with 10% FBS-DMEM to obtain dermal cell pellets. The dermal cell  
pellets were resuspended and seeded with 10% FBS-DMEM. The 
medium was changed every 2 days for primary cell culture until cells 
reached confluency.

Cells isolated from epidermal tissue, containing both keratino-
cytes and melanocytes, were combined with dermal cells isolated 
from dermal tissue at a 4:1 ratio, and a total of 0.2 × 106 mixed cells were 
seeded into each well of a 24-well plate, and cultured with the above 
human melanocyte medium plus 10% DMEM containing 10% FBS. After 
2 days, the cells were prepared for TEMPOmap data collection; 1 mM 
EU was used to metabolically label the cells.

The procedure for obtaining newborn foreskin tissues from dis-
carded hospital specimens without any personal identity informa-
tion was approved by the Partners Human Research Committee/IRB 
(protocol 2013P000093).

TEMPOmap experimental procedure
The 24-well glass bottom plates were treated with 1% methacryloxypro-
pyltrimethoxysilane (Bind-Silane) and poly-d-lysine solution sequen-
tially before cell plating. For iPSC culture, the plates were additionally 
coated with Matrigel (dilution, 1:80 in DMEM/F12 medium) at 37 °C for 
2 days. Cells were then plated on the coated plates and maintained in 
growth medium (DMEM containing 10% FBS) in a humid culture incuba-
tor with 5% CO2 at 37 °C. Pulse-chase experiments were performed with 
200 μM 5-EU and washed with cell medium for a designated amount of 
time. After metabolic labeling and washing, the cells were fixed with 
1.6% PFA in PBS for 10 min and permeabilized with prechilled (−20 °C) 
methanol for 30 min at −80 °C. The samples were then taken from 
–80 °C, equilibrated to room temperature and quenched with buffer 
containing PBSTR (0.1% Tween-20, 0.1 U μl–1 SUPERase•In in PBS) sup-
plemented with 10 mM Tris pH 7.5 and 0.1 mg ml–1 yeast tRNA for 10 min.

To functionalize the nascently ethynylated RNAs, 5′ azide-modified 
DNA splint (5 µM) was added to 1× Lumiprobe click chemistry buffer 
supplemented with 500 μM dNTP. CuAAC was initiated by adding 
ascorbate (800 µM). The reaction mixture was incubated at 37 °C for 
1 h with gentle shaking. The samples were then washed with PBSTR at 
37 °C for 10 min twice.

A library of TEMPOmap primer and padlock probes (targeting 
991 genes) and a set of STARmap SNAIL probes (targeting METTL3/14, 
YTHDF1-3) were separately pooled and ordered from IDT. All of the 
probe pools were dissolved in ultrapure RNase-free water to 100 nM 
per oligonucleotide for storage. The probe mixtures were then heated 
at 90 °C for 5 min and cooled on ice. Subsequently, the samples were 

incubated in 1× hybridization buffer (2× SSC, 10% formamide, 1% Tween-
20, 20 mM RVC, 0.1 mg ml–1 yeast tRNA, 0.2 U μl–1 SUPERase•In) sup-
plemented with TEMPOmap probes at 2 nM per oligo and STARmap 
probes at 10 nM per oligo in a 40 °C humidified oven with gentle shaking 
for 14–16 h. The samples were then washed with PBSTR twice and high 
salt buffer (4× SSC in PBSTR) once at 37 °C for 20 min in each wash, and 
one more PBSTR rinse after the wash. The samples were then incubated 
with T4 DNA ligation mixture (1:20 dilution of T4 DNA ligase, 1× BSA 
and 0.2 U μl–1 SUPERase•In) at room temperature for 2 h with gentle 
shaking, followed by washing twice with PBSTR. Subsequently, the 
samples were incubated with RCA mixture (1:20 dilution of Phi29 DNA 
polymerase, 250 µM dNTP, 20 µM 5-(3-aminoallyl)-dUTP, 0.2 U µl–1 
SUPERase•In, 1× BSA) at 30 °C for 2 h with gentle shaking, followed by 
PBST (0.1% Tween-20 in PBS) wash twice. Next, the samples were treated 
with 25 mM Methylacrylic acid NHS ester (MA-NHS) in 0.1 M NaHCO3 at 
room temperature for 2 h, followed by washing once in PBST.

To cast the gel, the samples were first incubated with monomer 
buffer (4% acrylamide, 0.2% bis-acrylamide, 2× SSC) supplemented with 
0.2% TEMED at room temperature for 15 min. The buffer was removed 
and 30 µl polymerization mixture (0.2% ammonium sulfate, 0.2% 
TEMED dissolved in monomer buffer) was added slowly to the center 
of the sample, which was immediately covered with Gel Slick-coated 
coverslip. The sandwiched polymerization mixture was incubated for 
1 h in N2 followed by two washes in PBST. The gelated samples were then 
treated with dephosphorylation mixture (1:100× dilution of Antarctic 
phosphatase, 1× BSA) at room temperature overnight followed by 
washing twice with PBST.

TEMPOmap detection on dual luciferase reporter transcripts
The HeLa Tet-OFF cell line was used to control inducible gene expres-
sion by adding/removing doxycycline (DOX). Luciferase reporter plas-
mid containing firefly luciferase (expressed after inducible promoter) 
was provided by X. Wang34. Next, the reporter plasmid was transfected 
into HeLa Tet-OFF cell lines and the cells were incubated with 1 μg ml–1 
DOX during passaging and maintenance. For Extended Data Fig. 1h, 
the two EU labeling points were incubated with 200 μM EU and no DOX 
for 1 h and 20 h, respectively. For Extended Data Fig. 3b, a pulse-chase 
experiment with DOX withdrawal was designed as illustrated in the 
figure. For all timepoints, cells were incubated with 1 μg ml–1 DOX to 
keep firefly luciferase expression off, while it was turned on by removing 
DOX while EU was washed off. Next, TEMPOmap on firefly luciferase 
and STARmap on renilla luciferase (for transfection control and gene 
expression normalization) were performed in the same cells. For both 
firefly and renilla luciferases, six sets of probes were designed for 
amplicon library preparation.

Total EU-RNA detection by fluorescently labeled streptavidin
After the pulse-chase labeling experiment in HeLa cells described in 
the previous section and in Fig. 2a, cells were fixed and permeabilized 
and the total EU-RNAs were biotinylated with 10 μM azide-PEG9-biotin 
via a CuAAC-mediated click reaction. The biotin-modified RNAs were 
incubated with streptavidin-AF647 overnight at 4 °C. The fluorescent 
intensity of streptavidin-AF647 was measured to estimate EU-RNA 
localization across time. Subcellular segmentation was performed 
by CellProfiler.

TEMPOmap sample imaging and in situ sequencing
TEMPOmap imaging and in situ sequencing were carried out as 
previously described1 with the following modifications. In brief, we 
performed six rounds of four-color confocal imaging for 998 gene 
measurements, plus one final round including the nucleus detection 
stained with DAPI, cell morphology stained with flamingo and the ER 
region with Concanavalin A following the manufacturers’ instruc-
tions. Each round of imaging began by incubating the samples with 
the sequencing mixture (1:25 dilution of T4 DNA ligase, 1× BSA, 10 µM 
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reading probe and 5 µM fluorescent decoding oligonucleotides) at 
room temperature for 3 h, followed by rinsing with washing and imag-
ing buffer (2× SSC, 10% formamide) three times for 5 min each before 
imaging. After image acquisition, the samples were treated with the 
stripping buffer (60% formamide, 0.1% Triton X-100) twice for 10 min 
followed by washing three times with PBST. After six rounds of imaging, 
we then imaged the cell nucleus stained with DAPI, cytoplasm stained 
with flamingo fluorescent gel stain and ER stained with Concanavalin 
A. Images were acquired using Leica SP8 confocal microscopy with a 
405 diode, white light laser, ×40 oil-immersed objective (numerical 
aperture 1.3). For each round, images were acquired with Alexa 488, 
546, 594 and 647 illumination at 30 focal planes. For HeLa data col-
lection, the voxel size of the imaging was 200 nm × 200 nm × 350 nm. 
For iPSC and skin data collection, the voxel size of the imaging was 
90 nm × 90 nm × 350 nm.

Image processing and amplicon decoding
First, an image deconvolution was applied with Huygens Essential 
v.20.10.1p2. The deconvolved images were then normalized by the 
Min-Max strategy and further adjusted with histogram equalization 
where images in the first sequencing round were used as reference. In 
addition, a customized Top-hat filtering was applied to enhance fluo-
rescence signals. To better identify the barcode of each cDNA amplicon, 
both a global registration and a nonrigid registration were performed on 
the preprocessed images. Global image registration was accomplished 
using a 3D fast Fourier transform (FFT) to compute the cross-correlation 
between two image volumes at all translational offsets. The position of 
the maximal correlation coefficient was identified and used to translate 
image volumes to compensate for the offset. The nonrigid registration 
was achieved by the ‘imregdemons’ function in MATLAB v.2020b. After 
registration, individual amplicons were identified in each color channel 
on the first round of sequencing. For this experiment, amplicon dots 
were identified by finding local maxima in 3D with MATLAB function 
‘imregionalmax’. Dots with intensity at their centroids less than the 
threshold were removed. Based on the estimation of amplicon size, 
the dominant color for each dot across all four channels on each round 
was determined by a three by three by three voxel volume surrounding 
the dot centroid. The integrated intensity of the voxel volume in each 
channel was used for color determination. In this case, each dot in each 
round had an L2-normalized vector with four elements. The color of 
each dot was determined by the corresponding channel with the highest 
value in the vector. Dots with several maximum values in the vector were 
discarded. Then, dots were first filtered based on quality scores (average 
of –log(color vector value in dominant channel) across all sequencing 
rounds). The quality score quantified the extent to which each dot on 
each sequencing round came from one color rather than a mixture of 
colors. The barcode codebook was converted into color space based on 
the expected color sequence following the two-base encoding of the 
barcode DNA sequence. Dots passed the quality threshold and with a 
matched barcode sequence in the codebook were kept; all other dots 
were rejected. Both the physical locations and gene identities of the 
filtered dots were saved for downstream analysis.

Cell segmentation and subcellular segmentation
Image segmentation was performed using CellProfiler v.4.1.3 and other 
customized scripts in MATLAB v.R2020b. A two-dimensional reference 
segmentation mask was generated by a customized pipeline for both 
the DAPI staining image and the composite image combining amplicon 
channels and flamingo fluorescent gel staining image.

For 3D segmentation, the images targeting different cellular com-
partments were first processed by a median filter and binarized with 
the Otsu’s method. All connected components (objects) that have 
fewer than 100 pixels were removed from the binary image. Then, 
images were dilated with a disk structure element with radius equal to 
three. Lastly, a 3D segmentation mask targeting each cellular region 

was generated by an element-wise multiplication process between the 
binary image and the two-dimensional reference cell segmentation 
from the previous step. The 3D volume of each cell was calculated 
by the total voxels of the single cell in 3D segmentation. The nucleus 
regions were removed from the 3D cell segmentation masks to create 
the cytoplasm segmentation.

Filtered amplicons overlapping each segmented cell region in 3D 
were then assigned to the specific subcellular region (Extended Data 
Fig. 2b), to compute a per-cell gene expression matrix in each cellular 
compartment.

RNA subcellular distribution analysis via DR calculation
To quantify the relative location of reads inside the cytoplasm, a DR was 
calculated for each of the cytoplasmic reads. The DR value for an RNA 
read within a cell was defined as the shortest distance of the read to the 
surface of nucleus (dn), defined by nucleus segmentation, normalized 
by the sum of this distance and the shortest distance to surface of the cell 
membrane (dc), defined by cell segmentation (Extended Data Fig. 2d).  
The shortest distance was calculated with a Euclidean distance 
transform function provided in Scipy. A cutoff DR value of 0.909 (or 
dn/dc = 10) was used to further segment the cytoplasmic region into 
‘middle’ and ‘periphery’ for a detailed examination of the subcellular 
distribution RNA reads across timepoints in TEMPOmap dataset.

Dynamic modeling of RNA cytoplasmic translocation
RNA cytoplasmic translocation parameter γ was estimated with a linear 
regression on mean DR value (described above) for each gene across 
different pulse-chase timepoints (Fig. 3b). For each gene, the DR values 
of all the reads in all the corresponding cells were averaged for the 
mean DR value to represent its cytoplasmic localization at a particular 
timepoint. Linear regression was performed across all timepoints for 
each gene using the ‘linregress’ function of Scipy in Python.

Cell clustering visualization via PHATE based on single-cell 
and subcellular-resolved gene expression matrix
Single-cell clustering was performed on the cell-by-gene expres-
sion matrix, normalized to a same number of cell total reads. 
Subcellular-resolved clustering was performed on a horizontally con-
catenated nuclear and cytoplasmic expression matrix, both of identical 
dimension as the cell-by-gene expression matrix, and normalized by 
the method described above. For both matrices, PHATE was used as 
the clustering and visualization method, which has shown to preserve 
both local and global structure of the data. A neighbor parameter of 
30 in PHATE was used in both analyses.

RNA degradation kinetics vector visualization and 
transcriptomic vector field animation by dynamo
The quivers (arrows overlaid with dots) on (I, III; Fig. 2e) were con-
structed by projecting the transcriptomic dynamics considering total 
RNA degradation kinetics in single cells to the PHATE embeddings. The 
total RNA degradation rates for vector visualization were estimated 
by – degradation rate × n, where n is the nascent RNA. Only a subset of 
quivers is visualized to avoid crowding of quivers. Quivers are sampled 
based on the inverse of local density of each cell to ensure relative uni-
form coverage across the entire space, Note we do not explicitly model 
the total RNA velocity because we do not capture the RNA synthesis 
with our pulse-chase labeling strategy.

The transcriptome vector field animation was constructed from 
the same RNA degradation kinetics as described above using dynamo22. 
Basically, we first learned the continuous vector fields in 3D PHATE 
space with dynamo. Then, a subset of cells at timepoint 0 were sampled 
whose vector field trajectories from these initial points were predicted 
by numerically integrating from those points with the function of the 
reconstructed vector field. We then animated the predicted movement 
in the PHATE space of those cells over time.
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Cell-cycle phase classification and validation
The three cell-cycle phases of single cells (G1, G1/S, G2/M) were classified 
using the TEMPOmap nascent RNA expression of the following genes 
via the cell-cycle scoring function ‘score_genes_cell_cycle’ in scanpy.

G1/S genes: BCL2L1, CDC6, DSCC1, DTL, MCM5, UNG, SNN, FEN1, 
GINS2, GMNN, MCM2, MCM4, MCM6, PCNA, PRIM1, RRM1, TYMS, UHRF1, 
CDCA7.

G2/M genes: TOP2A, TPX2, UBE2C, HJURP, BIRC5, CCNB2, CDCA2, 
CKAP5, CKS1B, CKS2, HMGB2, NCAPD2, NDC80, NUF2, TACC3, TMPO, 
MKI67, CENPF.

To validate whether 1 h-labeled nascent transcriptome can accu-
rately assign cell-cycle phases, we repeated the cell-cycle scoring 
analysis using 1 h pulse and total transcripts (22 h pulse and 0 h chase) 
from the previously published scEU-seq dataset, and conducted 
a correlation analysis of the assigned cell-cycle results (Extended 
Data Fig. 3d).

Dynamic modeling of RNA nuclear export
RNA nuclear export parameter λ was estimated with a linear regres-
sion fit to the ratios of nuclear read fraction across timepoints via the 
following equation (Extended Data Fig. 4c):

y = −λ × t + constant,

where

y = nuclear reads/ (nuclear + cytoplasmic reads) ,

λ = nuclear export, and t = timepoint.

We made an assumption of constant λ over time. For each gene,  
y was calculated by the averaged nuclear reads per averaged single-cell 
reads across all cells at a particular timepoint. Linear regression was per-
formed across all timepoints for each gene using the 'lm' function in R.

Dynamic modeling and fitting of RNA synthesis and 
degradation
Calculating RNA concentrations. After obtaining RNA copy numbers 
of genes in nucleus and cytoplasm of single cells, we first normalized 
the reads across different chase timepoints against the averaged reads 
of control genes (that is, genes targeted by STARmap probes. For HeLa 
dataset: METTL3, METTL14, YTHDC2, YTHDF1-3; for hiPSC-CM and pri-
mary skin cells: HPRT1), which we assumed to display uniform expres-
sion under different pulse-chase conditions since the total RNAs of each 
gene were targeted. We then divided normalized RNA copy numbers 
(Extended Data Fig. 4a) by unit cell volume (in voxels) to calculate the 
RNA concentrations in single cell (X(t)). RNA concentrations (copies 
per voxel) have a unit in reads per voxel and will be denoted as [RNA] in 
the following section. Voxel = 200 nm × 200 nm × 350 nm in HeLa and 
90 nm × 90 nm × 350 nm in iPSC and skin cells.

Modeling. Let α be the transcription constant ([RNA] h–1) and β be the 
degradation constant (1 h–1). The time derivative of X(t) at 1 h pulse is 
described by a first-degree ordinary differential equation, assuming 
parameters α and β are all constants (similarly for all other parameters 
in other equations below):

dX(t)/dt = α − β × X(t) (1)

And the time derivative of X(t) during the subsequent chase timepoints 
is described by:

dX(t)/dt = −β × X(t) (2)

Note that we assumed there is no new RNA synthesized after 
1 h pulse. Using equations (1) and (2), we estimated α and β from 

single-cell RNA concentration for each gene. It should also be noted 
that we found the data at 1 h pulse to 1 h chase condition to be an 
outlier of our linear model, potentially because of residual EU in 
the cells after washing. Therefore, we removed the cells from 1 h 
chase and used only the cells from 0, 2, 4 and 6 h chase for parameter 
estimations.

Fitting and thresholding. We evaluated the goodness of the fitting of 
our model to the data using R2. We further restricted to genes that (1) 
exhibit positive values; (2) have R2 ≥ 0.5 when fitting Eq. (2) to estimate 
β. We also assumed constant degradation (β) coefficient in RNA con-
centration over time. After evaluating the genes that passed the fitting 
threshold, we obtained 972 genes with all four parameters (α, β, λ, γ) 
when we combined all cells, and 800 genes for all 12 parameters (four 
parameters across three cell-cycle phases) when we separated cells 
into three cell-cycle phases.

Validation of kinetic parameter estimation. To validate our models, 
we repeated the calculation of synthesis (α) and degradation (β) using 
RNA copy numbers per cell of TEMPOmap dataset and the published 
scEU-seq dataset (1 h pulse, 0, 2, 4 and 6 h chase), where we obtained 
417 overlapping genes.

It is noteworthy that previous studies reported that RNA synthesis 
rate is higher in G2/M phase than in G1 (ref. 52). When repeating the 
calculation of α and β using RNA copy numbers per cell from our TEM-
POmap data and published scEU-seq data13, we observed consistent 
results that RNA synthesis rate is higher by around 15% in G2/M, whereas 
degradation rates across the cell cycle follow different trends between 
the two datasets, potentially because of different cell lines. However, 
when estimating α and β using RNA concentrations (RNA copy num-
bers per unit nuclei volume for α or that per unit cell volume for β), we 
observed no substantial changes in the distribution of α and β values 
at different cell-cycle stages. The contrast of estimated α and β by RNA 
copy number per cell versus RNA concentrations agrees with previous 
works that showed transcription rate is proportional to available sites 
of the chromosomes and gene expression homeostasis are regulated 
by cell size. The method details of gene clustering and visualization are 
described in the next section.

Kinetic parameter correlation and clustering analyses
Matrices describing pairwise correlation coefficients of the estimated 
kinetic parameters were constructed for both four parameters that 
are cell-cycle-combined (consisting of 972 genes) and 12 parameters 
that are cell-cycle-resolved (consisting of 800 genes) using R, which 
were then visualized by scatterplot matrix (Fig. 3c) and heatmap (Fig. 
3d), respectively. Representative examples of the correlations of 
cell-cycle-resolved 12 parameters were also visualized as scatterplots 
in Extended Data Fig. 5e-h.

We next performed dimensionality reduction on the cell-cycle- 
resolved 12 kinetic parameters of 800 genes using UMAP and then 
gene clustering by Louvain, via repurposing code implemented in 
Seurat v.3 at 1.0 resolution, which resulted in five gene clusters. We 
noted that the variance across kinetic parameters varies more greatly 
than the variance of the same parameter in different cell-cycle phases. 
Therefore, to better visualize the kinetic differences among the four 
clusters, we computed z-scores for each kinetic parameter calculated 
of all genes among the three cell-cycle phases and plotted the z-scores 
as heatmap in Fig. 4a.

For each of the five clusters identified by UMAP analysis, GO 
was performed on the genes in each of the four clusters identified by 
UMAP analysis against TEMPOmap 991-gene list as the background 
using DAVID53,54. All the GO terms with statistical significance (P value 
is close to or below 0.05) are shown in Fig. 4b. Visualization of the 
five clusters in representative cells was performed using customized 
scripts in Python.
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Covariation analysis of single-cell nascent RNA expression 
over time
For the covariation analysis in single-cell RNA expression across time 
(Extended Data Fig. 6a,d), we first normalized single-cell RNA reads 
according to the procedure when constructing PHATE embedding 
(see above), and constructed a matrix describing the Pearson cor-
relation of expression level between each gene pair using all the cells 
from 0, 2, 4 and 6 h chase. We then conducted a hierarchical clustering 
to organize the genes based on their correlation coefficients in these 
time-combined cells using ComplexHeatmap package embedded 
functions. The matrix was then visualized by heatmap (Extended Data 
Fig. 6a, left). We then created heatmaps describing the correlation coef-
ficients of expression level in each individual timepoint while retain-
ing the same grouping and ordering of the genes in all of the matrices 
(Extended Data Fig. 6d, complete heatmaps not shown). Comparing 
the heatmaps across the four timepoints, we manually identified four 
small gene clusters (annotated as group 1–4 in Extended Data Fig. 6a) 
that showed correlated expressions when combining all the timepoints 
but also varied along individual timepoints (Extended Data Fig. 6d). 
GO analysis was performed on all the genes in four groups against the 
background gene list as described above using DAVID53,54.

Definition of m6A genes in TEMPOmap gene list
For m6A-related gene labels, genes encoding high-confidence 
m6A-modified transcripts were identified by previously reported 
photoactivatable ribonucleoside-enhanced crosslinking and immu-
noprecipitation (PAR-CLIP) and immunoprecipitation data. Briefly, 
we defined m6A-RNA as (1) having an enrichment at least onefold in 
nonfragmented m6A RIP-seq and (2) transcripts that were bound in each 
replicate of PAR-CLIP. Similarly, we defined non m6A-RNA as (1) having 
an enrichment of less than zero in nonfragmented m6A RIP-seq and 
(2) transcripts that have no peak in either replicate of PAR-CLIP. Using 
these criteria, we defined 573 genes encoding m6A-RNA and 111 genes 
encoding non m6A-RNA from the TEMPOmap gene list.

Statistics and reproducibility
The representative cell images in Fig. 2f (V) were from one TEMPOmap 
experiment consisting of 2,256 G2/M cells. The representative cell 
images in Fig. 5b,h were from two TEMPOmap experiments consisting 
of 6,769 cells and 8,187 cells, respectively.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
TEMPOmap sequencing datasets of 991-gene in HeLa cells, 64-gene 
in hiPSC-CMs and 256-gene in skin cells are available in the Single 
Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/
SCP1792) and Zenodo (https://doi.org/10.5281/zenodo.7623400). 
The kinetic parameters of HeLa cells, hiPSC-CMs and skin cells are 
available in the Supplementary Tables. scEU-seq data were accessed 
under GSE128365. scNT-seq data were accessed under GSE141851. 
Bulk RNA expression data were accessed from Wang et al. (https://doi.
org/10.1038/nature12730)34.

Code availability
TEMPOmap is implemented based on MATLAB v.R2020b, Python v.3.8 
and R v.3.6.3. The following packages and software were used in data 
analysis: CellProfiler v.4.1.355, ImageJ v.1.51, anndata v.0.7.5, matplotlib 
v.3.1.3, seaborn v.0.11.0, scanpy v.1.8.256, numpy v.1.19.4, scipy v.1.6.3, 
pandas v.1.3.5, scikit-learn v.1.0.2, numba v.0.54.1, tifffile v.2021.7.2, 
scikit-image v.0.18.3, Seurat v.3.2.257, SeuratDisk v.0.0.0.9013, ggplot2 
v.3.3.5, factoextra v.1.0.7, ComplexHeatmap v.2.7.10.9001, dplyr v.1.0.4, 
circlize v.0.4.13 and IRanges v.2.20. The TEMPOmap analysis tool will 

be maintained and updated at https://github.com/wanglab-broad/
TEMPOmap. RNA vector field is generated by Dynamo v.1.0.0 and is 
available at https://github.com/aristoteleo/dynamo-release.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | TEMPOmap experimental design and optimization.  
a, Method conceptualization. TEMPOmap combines RNA metabolic labeling and 
state-of-the-art spatial transcriptomics to achieve single-cell spatiotemporal 
transcriptomics for RNA dynamic analysis. b, CuAAC-mediated click chemistry 
to conjugate azide-modified splint and EU-labeled nascent transcript. c, 
Comparison of TEMPOmap bi-probe and tri-probe design targeting ACTB mRNA. 
Left, probe design schematics. Middle, representative fluorescent images of 
cells treated with sense-targeting and antisense-targeting padlocks and primers. 
Right, quantification of fluorescence in cell images (6 images containing 400-
600 cells were measured under each condition). Data shown as mean + s.d. d, left: 
schematics showing the probe design and experiment of tri-probe and smFISH-
HCR. Tri-probe consists of three probes (primer, padlock, and splint) that target 
the same region of RNA targets, where the circularized padlock will be amplified 
to generate amplicons when all three probes are hybridizing on the same RNA 
locus. smFISH-HCR probe sets target to the same RNA regions, and bound probe 
pairs trigger self-assembly of a tethered fluorescent amplification polymer (or 

amplicon); right: quantification of the averaged number of amplicons per cell 
generated from tri-probe design or smFISH-HCR when targeting four genes 
with different expression levels (ACTB, DAG1, TMEM43, TTYH3) (n = 6 images per 
condition). e, Proof-of-concept pulse-chase experiment (top) followed by raw 
cell images (bottom) showing the translocation of ACTB mRNAs when chased 
after 1 hr EU treatment with different times. Cell nuclei (blue), amplicons (red). 
f, quantification of the averaged amplicon reads per cell (n = 6 images for each 
experimental condition). Unpaired two-sided t-test. g, schematics showing 
the mechanism of action of DNA vector expressing Firefly luciferase (under the 
control of DOX-induced promoter) and Renilla luciferase (under the control of 
constitutive promoter). h, left: schematics showing the two EU pulse-labeling 
timepoints while inducing the expression of Firefly luciferase for the same 
duration of time, followed by TEMPOmap/STARmap experiment; right: the 
quantification of the ratios of the average amplicon counts by TEMPOmap over 
STARmap for each field of view (n = 7 images). i, DNA sequences of TEMPOmap 
tri-probe system. Data shown as mean + s.d. Scale bar: 10 µm.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | TEMPOmap data processing and analysis. 
 a, TEMPOmap data analysis pipeline. b, Schematics of reads assignment in 
subcellular compartments. c, Histograms showing detected reads (cDNA 
amplicons) per cell (left), and genes per cell (right). d, Schematics of distance 
ratio (DR)-based subcellular segmentation in the cytoplasm. Two values for each 
amplicon were computed in 3D: dn, the shortest distance to nuclear membrane; 
dc, the shortest distance to cell membrane. ‘Middle’ is the region defined between 
DR = 0 and 0.9. ‘Periphery’ is defined as DR > 0.9. e, Simultaneous mapping and 
sequencing of nascent RNAs by TEMPOmap and total RNAs by STARmap in the 
experimental workflow. TEMPOmap-targeted amplicon reads were normalized 
against the reads of STARmap-targeted RNAs. f, validation of normalization 
strategy by comparing the gene expression data of example RNAs between 
TEMPOmap and bulk RNA-seq34. Both datasets were normalized by the first 

timepoint to facilitate the comparison of change in gene expression. g, violin 
plot showing the distribution of the ratios of TEMPOmap reads over STARmap 
reads averaged across single cells for all detected genes (n = 991 genes). Boxplots 
are defined in terms of mean (center line), 25-75% percentile (bounds of box), 
lower and upper quartile (whiskers) and outlier values (dots). h, representative 
fluorescent images showing the subcellular distribution of streptavidin 
fluorescence across pulse-chase labeling times. i, left: subcellular region 
assignment (middle and periphery) of one representative cell; right: boxplot 
summarizing the fraction of reads in two subcellular regions of single cells at 
each timepoint. Data are presented as mean values + /- s.d. The statistics compare 
the fractions of reads in the periphery. Kruskal–Wallis test with post hoc Tukey’s 
HSD. n = 238, 310, 171, 314, 333, 286 cells in each timepoint from left to right.
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Extended Data Fig. 3 | RNA subcellular analysis, residual EUTP test and  
cell-cycle phase identification. a, nuclear-to-cytoplasmic ratio of amplicon 
reads of 991 genes at 6 hrs chase timepoint. Genes were ranked from top to 
bottom according to the ratios. b, left: pulse-chase experiment design on  
HeLa tet-OFF cells. We used 1 hr metabolic labeling (pulse) followed by  
0, 1, 2, 4, and 6 hrs chase while inducing the gene expression of Firefly luciferase. 
We added a negative control with no gene expression and no labeling, and a 
positive control with 20 h pulse and gene induction. All of the cells were then 
processed by TEMPOmap workflow. Right: quantification of the averaged 
number of amplicons of Firefly TEMPOmap normalized by Renilla STARmap 
in each condition. n = 5 fluorescent images measured per condition. Data are 
presented as mean values + /- s.d. n.s = non-significant, two-tailed t-test.  

c, Cell-cycle identification (G1, G1/S, G2/M) by cell-cycle gene marker measured 
via TEMPOmap labeled RNA expression. Cell-cycle scores were calculated via 
‘score_genes_cell_cycle‘ in scanpy. The cells were visualized via PCA and colored 
by cell-cycle phases (top left). Variations in the raw counts of all cell-cycle gene 
markers (bottom left) and four representative markers (right) were projected 
by the pseudotime analysis. d, Comparison of cell-cycle identification by 1 hr 
pulse-labeled reads and total reads using scEU-seq dataset13 shows that the 
nascent transcriptome can accurately define cell-cycle states. The number in 
each box indicates the number of cells. e, Cell clustering result based on PHATE 
embedding of the nucleocytoplasmic matrix. Cluster 1 incorporates the cells 
(n = 137 cells) in the M phase by visually inspecting raw images.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Quantification and quality control of RNA subcellular 
kinetic parameters. a, Correlated relation between cell volume (in voxels) and 
single-cell reads, indicating the influence of transcript number by cell volume.  
b, Schematics showing the biased single-cell RNA read counts with varying 
physical cell volumes. c, Mathematical models for estimating RNA kinetic 
parameters (α,β and λ) and the detailed workflow of calculation and fitting 
procedure. Note: X(t) = single-cell RNA concentration; N(t) = nuclear RNA 
concentration; C(t) = cytoplasmic RNA concentration. d, Changes in the natural 
log of X(t) across timepoints of genes with R2 = 0.99-1.0 (top) and R2 = 0.46-
0.53 (down). Representative genes are shown. The estimated β values for all 
genes were filtered with a threshold of R2 > 0.5 as quality control. e-f, Density 
plots showing the distribution of R2 when fitting degradation constant by 
a first-order ODE using original (e) and temporally-shuffled (f) pseudobulk 
expression vectors. g-h, scatterplots showing Pearson’s correlation of RNA 
synthesis (RNA/hour, g) and degradation (1/hr, h) estimation between this 
study and single-cell scEU-seq datasets after filtering the genes based on fitting 
the degradation parameters using R2 > = 0.5, 0.8 and 0.9, respectively. Units 

of α is RNA concentration/hr, where RNA concentration is defined by copies/
voxel (voxel = 200 nm x 200 nm x 350 nm). Units of β is hr−1. i, Left: schematics 
of pulse-chase designs utilized in scEU-seq and scNT-seq; right: correlation 
of degradation between scEU-seq and scNT-seq after filtering genes based on 
fitting the degradation parameters using R2 > = 0.9. j, Histogram of estimated λ 
(nuclear export) values for all genes. k, The distribution of single cell-averaged 
DR values for all 991 genes across 0-6 hrs chase timepoints. n = 991 genes for 
each timepoint. Boxplots are defined in terms of mean (center line), 25-75% 
percentile (bounds of box), lower and upper quartile (whiskers). l, Histogram 
of estimated γ (cytoplasmic translocation) values for all genes. Blue dashed line 
separates the genes with γ > 0 and γ < 0, which indicates the opposite direction 
of observed translocation. m, Left, 19 genes with γ < 0 (R2 > 0.5) were strongly 
enriched in secreted and organellar proteins. Middle, time-lapsed DR values of 
representative genes. n, Schematics showing the observed inward direction of 
RNA translocation of genes with γ < 0. Two potential mechanisms are shown: 1). 
RNA translocation (active or passive); 2). Local RNA degradation.
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Extended Data Fig. 5 | RNA kinetic parameter comparison by cell volume 
and cell-cycle stages. a-b, Violin plots showing the distribution of RNA 
concentration (a), synthesis, degradation, export and cytoplasmic translocation 
(b) for all detected genes averaged across single cells. n = 2792 cells for large 
cells and 2669 cells for small cells in a-b. c, violin plots showing the distribution 
of cell volumes (in voxels) in different cell-cycle stages. ANOVA test. n = 881, 
2324, 2256 cells in G1, G1/S and G2/M, respectively. d, synthesis, degradation, 
export, and cytoplasmic translocation for all detected genes averaged across 
single cells in each cell cycle phase and separated by cell volumes. Units of α is 

RNA concentration/hr, where RNA concentration is defined by copies/voxel 
(voxel = 200 nm x 200 nm x 350 nm). Units of β, λ, γ are hr−1. Boxplots indicate 
mean and 25-75% quantile. n = 239, 1484, 1069 cells for G1, G1/S and G2/M of large 
cells, respectively, and 642, 840, 1187 cells for G1, G1/S and G2/M of small cells. 
Paired t-test. ***p < 0.001. *p < 0.05. e-h, Examples of pairwise correlation in Fig. 
3d, showing scatter plots of the relationships between G1 and G2/M. Pearson’s 
correlation coefficients from left to right: α (ρ = 0.99), β (ρ = 0.60), λ (ρ = 0.46),  
γ (ρ = 0.04).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Single-cell RNA expression co-variation analysis. 
a, Heatmap depicting the pairwise correlation of 911 genes by TEMPOmap-
measured single-cell RNA covariation when combining four timepoints (0, 2, 4,  
6 hrs chase), where the color indicates the value of Pearson correlation. Group 1-4 
are highlighted for highly correlated gene modules (left) and zoomed in (right). 
b, Pathway enrichment analysis result of genes in Group 1-4 from single-cell gene 
covariation heatmap in a using DAVID. c, Boxplots showing the distribution of 
six kinetic parameters of four gene groups (n = 14 genes in Group 1; n = 7 genes 
in Group 2, n = 7 genes in Group 3, n = 15 genes in Group 4). Units of α is RNA 
concentration/hr, where RNA concentration is defined by copies/voxel (voxel 
= 200 nm x 200 nm x 350 nm). Units of β, λ, γ are hr−1. P values, one-way ANOVA 

test. Data shown as means, 25-75% quartiles and ranges. d, Heatmaps were 
generated showing matrices of the pairwise gene co-variation in each of the 0, 
2, 4 and 6 hrs chase timepoints. Gene order along each matrix was the same and 
determined by the hierarchical clustering tree of the matrix combining the four 
timepoints in a (results were not shown). Zoom-in views of Group 1-4 from the 
co-variation heatmaps generated by gene expression in each timepoint, showing 
the correlation of RNA co-variation of each gene module across individual 
timepoints. Color in heatmaps indicates the value of Pearson correlation. 
G1/S and G2/M marker genes were annotated in each gene block. e, PHATE 
visualization of single cells showing the expression level (the fraction of reads in 
the cluster/total reads) of Cluster 1-5.
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Extended Data Fig. 7 | Visualization of gene clusters with different 
combinations of RNA kinetic strategies. a, Visualization of all the amplicons 
in representative cells (combined, left) and separated by gene clusters (right) 
across pulse-chase timepoints. Scale bar: 10 µm. Colors of amplicons indicate 

unique gene clusters. b, Boxplots showing the subcellular distribution of RNA 
reads over time in each kinetic cluster. Vertical lines indicate s.d. For each cluster, 
0, 2, 4, 6 hrs chase have n = 1028, 910, 946, 542 cells, respectively.
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Extended Data Fig. 8 | Validation of reverse translocation (γ) of cluster 4 
genes in G1 by smFISH-HCR and subcellular RNA kinetics in the context of 
m6A post-transcriptional modification. a, schematics of HeLa-FUCCI cells. 
The cell line expresses two fluorescently-tagged cell cycle marker proteins (red, 
RFP-CDT1 and green, GFP-Geminin); these two markers have co-expression 
during G1-S transition (yellow). b, after plotting the normalized intensities of 
GFP and RFP, we obtained G1 and G2/M phases based on the thresholds indicated 
in the plots. c, boxplots comparing the DR values of ACTB and MKI67 in G1 and 
G2/M based on the cell label in c. d, Pie chart describing m6A-RNA methylation in 

the gene pool (see Methods). e, Violin plots showing the difference of synthesis 
(left) and degradation rates (right) between m6A-RNA and non-m6A-RNA from 
scEU-seq dataset. Paired t-test. Boxplots indicate mean and 25-75% quantile. f, 
Boxplots comparing the four parameters estimated for m6A (n = 476 genes) and 
non-m6A RNAs (n = 89 genes) across three cell-cycle phases. Units of α is RNA 
concentration/hr, where RNA concentration is defined by copies/voxel (voxel = 
200 nm x 200 nm x 350 nm). Units of β, λ, γ are hr−1. ** p < 0.01, Wilcoxon test. Data 
shown as means (notches), 25-75% quartiles (boxes) and ranges (vertical lines).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | RNA subcellular dynamics in hiPSC-CMs. a, 
Representative fluorescent cell images of TEMPOmap detection of NEAT1 in 
HeLa cells, MCF7, iPSC culture and primary foreskin cells. SNR (TEMPOmap 
20-30 h labeling condition/No EU controls) in each cell line is shown in the 
images (n = 4-6 images). Scale bar: 10 μm. b, RNA reads (cDNA amplicons) per 
cell for each pulse-chase timepoint in hiPSC-CMs culture. c-d, stacked bar plots 
summarizing the fraction of reads in each subcellular region of all cells at each 
timepoint when combining all cells (c) and separating into CMs and cardiac 
fibroblasts (d). Vertical lines indicate s.d. e, PCA representation showing the gene 
clustering of 64 genes using all eight estimated parameters across cell cycle. f, 
UMAP visualization of single cells showing the averaged expression level of each 

gene in cluster 1-3 across all timepoints. Color indicates the level of averaged 
RNA expression. g, scatter plots showing the correlation of α, β, λ, γ (from left to 
right) in CMs and cardiac fibroblasts. Marker genes for CMs are colored in red, 
and for cardiac fibroblasts in blue. Units of α is RNA concentration/hr, where 
RNA concentration is defined by copies/voxel (voxel = 90 nm x 90 nm x 350 nm). 
Units of β, λ, γ are hr−1. h-i, Heatmap depicting the pairwise correlation of 64 
genes in the hiPSC-CMs by TEMPOmap-measured single-cell RNA covariation 
when combining four chase timepoints (0, 2, 4, 6 hrs chase), where the color 
indicates the value of Pearson correlation (h). Group 1-2 are highlighted for highly 
correlated gene modules (left) and zoomed in (i).
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Extended Data Fig. 10 | See next page for caption.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-01829-8

Extended Data Fig. 10 | RNA subcellular dynamics in neonatal primary skin 
culture. a, RNA reads (cDNA amplicons) per cell for each pulse-chase timepoint 
in primary human skin cell culture. b-c, stacked bar plots summarizing the 
fraction of reads in each subcellular region of all cells at each timepoint when 
combining all cells (b) and separating into cardiomyocytes and fibroblasts (c). 
Vertical lines indicate s.d. d, PCA representation showing the gene clustering 
of 256 genes using all eight estimated parameters across cell cycle. e, UMAP 
visualization of single cells showing the averaged expression level of each gene 
in cluster 1-3 across all timepoints. Color indicates the level of averaged RNA 

expression. f, UMAP visualization of single cells based on the expression level of 
PMEL and MITF (melanocyte markers), COL1A1 and COL6A1 (fibroblast markers), 
and KRT14 and KRT5 (keratinocyte markers). Color indicates the level of RNA 
expression. g-h, Heatmap depicting the pairwise correlation of 256 genes in 
the primary skin cells by TEMPOmap-measured single-cell RNA covariation 
when combining four chase timepoints (0, 2, 4, 6 hrs chase), where the color 
indicates the value of Pearson correlation (g). Group 1-3 are highlighted for highly 
correlated gene modules (left) and zoomed in (h).
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